Examples of Spherical Varieties

Spherical varieties seminar - August 3 rd 2018

Notation/Degn Reminder
references: "Lectures on spherical and wonderful varieties" by Guido Pezzini - "Intro to spherical varieties" by Boris Pasquier

- "Frobenius splitting Methods in Geometry + Rep Theory" by Michel Prion + Shrawan kumar

GOAL Discuss various examples of spherical, horospherical, and wonderful varieties, as well as any related definitions and theorems that we havent seen in this seminar.

Def. A G-variety is spherical if it is normal and has an open B-orbit.

- (X, x) is an embedding of G / H if X is spherical, the G-orbit $G x$ is open in X, and H is the stabilizer of $x \in X$. We call an embedding simple if it has a unique closed G-orbit $\xrightarrow{\binom{\text { Its also useful to recall that any spherical G-variety admits a cover by open G-stable simple }}{\text { spherical varieties - so we really only need to worry about simple guys. }}}$

Def. $\cdot \mathbb{C}(X)^{(B)}=\left\{f \in \mathbb{C}(X) \mid b f=x(b) f \quad \forall\right.$ b B 立 some $\left.x: B \rightarrow \mathbb{C}^{*}\right\}=" B$-Eigenvectors" or B semi-invariant - $\Lambda(X)=\left\{x_{f} \mid f_{t} \mathbb{C}(X)^{(\beta)}\right\}=$ set of all B-weights

- A color is a B-stable prime divisor that is not G-stable. We call the set of all colors the palette, which we denote by $\Delta(x)$.
- Let (x, x) a simple embedding of G / H. Define $C(x) \leq N(x)$ to be the convex cone generated by $P_{x}(B(X))$ and by all of the G-invariant valuations associated to G-stable prime divisors of X. The pair $(C(x), D(x))$ is the painted cone of x.
- Given an embedding (X, x) of G / H, we define its painted fan as:

$$
\mathcal{F}(x)=\left\{\text { colored cones associated to } x_{y, G} \text { for any } G \text {-orbit } Y \text { of } x\right\}
$$

with $X_{y, v}=\{x \in G \mid \overline{G \cdot x} \geq y\}$
Notation. $\rho_{D}=$ valuation associated to the prime divisor D.

- $N(X):=\operatorname{Hom}_{\mathbb{Z}}(\Lambda(x), \mathbb{Q})$
- $\mathcal{D}(x, y)=$ colors of x that contain the closed orbit y.
- $\ell(X)=$ cone (convex) generated by $\rho_{x}(\alpha(X))$ 产 weights associated to G-stable prime divisors of x.
- $U(X)=$ set of G-invariant valuations on X.

Pezzinis notes (and Robs!) mention the following:
To classify ALL spherical G-varieties, we can look at the following:

- Fix a spherical subgroup $H \leq G$ and study all embeddings X of G / H
- Study all spherical subgroups $H \leqslant G$

Recall: when GIH is a spherical variety, we call Ha spherical subgroup.

First, I want to fully flesh out an example that we've already seen.
Example When Tracy talked about spherical embeddings, she gave the example of G / H with $G=\mathrm{SL}_{2}$ and $H=T$. (Its also in Robs notes from last week) During her talk, we saw that the homogeneous space 6/H admits only one nontrivial embedding: $X=\mathbb{P}^{\prime} \times \mathbb{P}^{\prime}$. well (try) to construct the painted fan for X.

Recall our choice of max torus $T=H$ and Borel subset B :

$$
T=\left\{\left.\left(\begin{array}{ll}
a & 0 \\
0 & a^{-1}
\end{array}\right) \right\rvert\, a \neq 0\right\} \quad \& \quad B=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & a^{-1}
\end{array}\right) \right\rvert\, a \neq 0\right\}
$$

The B-orbit:

$$
\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right)\binom{1}{0}=\binom{a}{0} \sim\binom{1}{0} \quad\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right)\binom{0}{1}=\binom{b}{a^{-1}} \quad\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right)\binom{1}{1}=\binom{a+b}{a^{-1}}
$$

Performing a change of variables as in Tracks talk, we see that the B-orbit is iso. to

$$
\left\{(p, q) \in \mathbb{P}^{\prime} \times \mathbb{P}^{\prime} \text { with } p \neq q \text { and } p, q \neq\binom{ 1}{0}\right\}
$$

(you can also check that this is open)
B-stable divisors: (that arent G-stable)
From Tracy talk, we have: $D^{+}=\mathbb{P}^{\prime} \times\{[1,0]\}$ \& $D^{-}=\{[1,0]\} \times \mathbb{P}^{\prime}$
Notice also that the closed G-orbit is $E=\operatorname{diag}\left(\mathbb{P}^{\prime}\right)$. We also have the following B-stable affine open set:

$$
X_{z, B}=X \backslash\left(D^{+} \cup D^{-}\right)=\{[x, 1],[y, 1]\} \cong \mathbb{R}^{2}
$$

From Robs talk, recall that the function field of $\mathbb{P}^{\prime} \times \mathbb{P}^{\prime}-\Delta\left(\mathbb{P}^{\prime}\right)$ is the same as that of $\mathbb{A}^{2}-\mathbb{C}(x, y)$
In $X_{2, B}$, we know a local equation for z : $f(x, y)=(x-y)^{-1}$ This is a B-eigenvector of weight $-\alpha_{1}$.
$\begin{array}{ll}\text { Thus, we have the following: } & \left\langle\rho(z), \alpha_{1}\right\rangle=-1 \text {, and } V(x)=\mathbb{Q}_{20} v_{z} .\end{array} \begin{array}{r}D_{1}=\text { vanishing of } x_{21} \\ D_{2}=\text { vanishing } x_{22} \\ \text { Notice also that } f(x, y) \text { has poles of order } 1 \text { along } D^{+} \text {and } D_{1}^{-} \text {so that } \\ \left\langle\rho\left(D^{+}\right), \alpha_{1}\right\rangle=\left\langle\rho\left(D^{-}\right), \alpha_{1}\right\rangle=1 .\end{array}$
Finally, from Robs notes we have that $\Lambda(x) \cong \mathbb{Z}$, so that $N(X)=\operatorname{Hom}_{\mathbb{Z}}(\Lambda(X), \mathbb{Q}) \cong \mathbb{Q} . \quad$ and $\quad \rho\left(v_{O_{2}}\right)=n_{D_{2}}(f)=1$ Using this, we get the following painted cone:

Def. A homogeneous space G/H is called horospherical if one of the following holds:

- It is a torus bundle over a flag variety G/P
- H contains the unipotent radical of a Borel subgroup

These are all
equivalent

- H is the kernel of characters of a parabolic subgroup Poo G

Theorem X is horospherical if and only if $V(x)=N(x)$.

Example Let $G=S L_{2}$ again. Weill take $H=U=$ set of unipotent upper Δ matrices in G.

$$
H=\left\{\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)\right\} \text { and } B=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right) \right\rvert\, a \neq 0\right\}
$$

NOTICE: $\quad G / H=S L_{2} / U=\mathbb{C}^{2} \backslash\{(0,0)\}$.

- The only color D is given by the equation $\{y=0\} . \quad \Rightarrow \Lambda\left(S L_{2} / u\right) \cong \mathbb{Z} w_{1}$
- $\left\langle\rho(D), w_{1}\right\rangle=v_{D}\left(f_{w_{1}}\right)=v_{D}(y)=1$
- Notice: $U\left(S L_{2} / U\right) \cong N\left(S L_{2} / U\right)$.

We have the following non trivial simple embeddings:

- $\left(c_{1}, \mathcal{D}_{1}\right)=(\mathbb{Q} \leq 0 \rho(D), \varnothing)$. According to $P_{\text {ezzini, }}$ this gives the embedding $G / H \cup\left\{\right.$ line © $\propto \infty^{\}} . . .\left(\mathbb{P}^{2} \backslash\{0\}\right)$
. $\left(\varphi_{2}, \mathcal{Q}_{2}\right)=\left(\mathbb{Q}_{\geq 0} \rho(D),\{D\}\right)$. This gives the embedding $6 / H \cup\{(0,0)\} \cong \mathbb{C}^{2}$.
$\longleftrightarrow \cdot\left(C_{3}, \mathscr{A}_{3}\right)=\left(\mathbb{Q}_{\geqslant 0} p(D), \varnothing\right)$. This gives us $B 1_{0} \mathbb{C}^{2}$

This is possibly a stupid question, but how do these painted fans compare to their doric variety counterparts? (ie BI, C ${ }^{2} \ldots$ as a toxic variety)
ie.

\mathbb{C}^{2} (The shaded regions are only to indicate the maximal cones of the fan)

What about the nonsimple embeddings of $S L_{2} / U$? There are two:
painted fan instead of a painted cone!

- $\mathcal{F}=\left\{(\{0\}, \varnothing),\left(C_{1}, D_{1}\right),\left(C_{2}, D_{2}\right)\right\}$ gives embedding \mathbb{P}^{2}. The fan is the following:

- $\mathcal{F}=\left\{(\{0\}, \mathbb{D}),\left(C_{1}, D_{1}\right),\left(C_{3}, D_{3}\right)\right\}$ which gives $B I_{0} \mathbb{P}^{2}$

Wonderful Varieties

Def. Let X be a G-variety. We call X wonderful if:
(i) X is smooth and complete
(ii) X contains an open G-orbit X_{G}^{0} whose complement is the union of smooth G-stable prime divisors $X^{(1)}, \ldots, X^{(r)}$ which have normal crossings and nonempty intersection.
(iii) For all $x, y \in X$ we have:

$$
G_{x}=G_{y} \text { if and only if }\left\{i \mid x \in X^{(i)}\right\}=\left\{j \mid y \in X^{(j)}\right\}
$$

The number $r \log$ divisors from part (ii)) is the rank of X, and $\bigcup_{i=1}^{r} X^{(i)}$ (union of G-stable prime divisors) is the boundary of X, which we denote as ∂X.

A note on "normal crossing": I interpret this to mean that the $x^{(i)}$ intersect like the coordinate] hyperplanes in \mathbb{C}^{n} As in Pezzinis notes, any intersection of them will give a wonderful subvariety.

Theorem (due to Luna in 1996) Wonderful varieties are projective and spherical.

Def Let $z \in X$ be the unique point fixed by B_{2}. It lies on $Z=G z=$ unique closed G-orbit. Consider the vector space $T_{z} X / T_{Z} Z$. (this is naturally a τ-module) Its T-weights are called spherical roots of X, and we denote the set of these by Σ_{x}.

If X is the wonderful embedding of a S.H.S. G/H of rank r, then the spherical roots are in bijection with codim $1 \quad \theta$-stable closed subvarieties, and with codim $r-1$-stable closed subvarieties.

Facts (That / found interesting)

- Flag varieties are wonderful of rank $(\mathbb{D}$.
- The only wonderful variety that is toric and wonderful is the point.
- A spherical variety is wonderful iftonly if it's the canonical embedding of its open G orbit and the embedding is smooth.

Thus: a spherical homogeneous space admits at most one wonderful embedding

- Wonderful varieties are classified by their associated root system
- A natural question: when does a spherical homog. space admit a wonderful embedding? \leadsto Classification of such spaces is not yet complete.

Although, there is a necessary condition: $N_{6} H / H$ must be finite.

The general situation: The homogeneous spaces $G / H=H \times H / \operatorname{diag}(H)$ for H semisimple and adjoint admit wonderful compactification X. X has spherical roots $\sigma_{i}=\alpha_{i}+\alpha_{i}^{\prime}$, where α_{i} and α_{i}^{\prime} are simple roots for each copy of H. There are also n colors, Σ we can determine the values of their functionals on each σ_{i} via the carton matrix assoc. to H .

According to Pezzini...
Note. SL L_{2} admits a wonderful compactification. (Its the only non-adjoint simple group that does) it is:

$$
X=\left\{a d-b c=t^{2}\right\} \subset \mathbb{P}\left(\mu_{2 \times 2} \oplus \mathbb{C}\right)
$$

Example. Let $G=P G L_{2}$. We consider $G \times G$, with $X=\mathbb{P}\left(M_{2 \times 2}\right) \cong \mathbb{P}^{3}$ $B=$ Bored subgroup of $G \times G$. so weill take $B=B^{-} \times B$, with:
$B^{-}=\left\{\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right)\right\}$ and $B=\left\{\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\right\}$. Notice that $B^{-} \cap B=T$.

- What is the B-orbit of $X^{\text {? }}$ (How does B acton the identity?)
$\left(\begin{array}{cc}a & b \\ 0 & a^{-1}\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}c^{-1} & 0 \\ -d & c\end{array}\right)=\left(\begin{array}{cc}a c^{-1}-b d & b c \\ -a^{-1} d & a^{-1} c\end{array}\right) \Longrightarrow$ Need $\left.a \neq 0 . \quad \begin{array}{c}\text { Also.. didnt Keller mention this } \\ \text { in his talk? } \\ \ldots \text { except with }\end{array}\right)$
$S L_{2} \times S L_{2}$?
so the open B-orbit will be: $X_{B}^{0}=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a \neq 0, a d, b c \neq 0\right\}$
- What is the G-orbit of X?

This should just be: $\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a d b c \neq 0\right\}$ Now we can figure out what $\begin{aligned} & \text { our bound ry divisors should } b e \text {. }\end{aligned}$
So, the open 6X6-orbit of X will be: $X^{0}=\mathbb{P}\left(\mu_{2 \times 2}\right) \backslash Z(a a-b c)$
then.. $X \backslash X^{\circ}$ ought to give us the boundary divisors. Notice $\mathbb{P}\left(\mu_{2 X_{2}}\right) \backslash\left(\mathbb{P}\left(\mu_{2 x_{2}}\right) \backslash Z(a d-b c)\right)=$
$Z(a d / b c)$

- What about the colors?
boundary divisor
Recall from the defy: $X^{0} \backslash X_{B}^{\circ}=$ union of prime B-stable divisors = union of colors
so.. $X^{0} \backslash X_{B}^{0}=\left(\mathbb{P}^{3} \backslash Z(a d, b c)\right) \backslash\left(\mathbb{P}^{3} \backslash(z(a d, b c) \cup z(a))\right)=z(a) \quad \Omega \rightarrow$ one color!
\longrightarrow See "Total cord ring of a wonderful)
- Spherical roots (w.r.t $B \times B$) are pairs $\left(-\alpha_{i}, \alpha_{i}\right)$, where α_{i} are the simple roots of the root system associated to $P G L_{2} \ldots$ which is A_{1}. A choice of simple root for A_{1} is $e_{1}-e_{2}$.

So... $N(x) \cong$ root lattice of A_{11}, and $N(x)=\operatorname{Hom}_{z}(N(x), \mathbb{Q}) \cong$ weight lattice of A_{1}. (tensored w/ \mathbb{Q} ?) Finally... $U(X)=$ negative weyl chamber. (I think Blake talked about this?) an attempt at a painted fan:

