§0: Notation & References

Throughout these notes, I attempted to use notation consistent with Perrin's notes. We let k denote an algebraically closed field of arbitrary characteristic, although all of the examples will take place in characteristic zero. We will take a *variety* to be a reduced separated scheme of finite type over k.

The primary reference for these notes is [4]. (And [3] as a supplement) For facts concerning Lie groups and Lie algebras, see [1], and for general algebraic geometry facts, [2] was used.

§1: What is an Algebraic Group?

Definition 1. An algebraic group is a variety G which is also a group. We require also that the maps defining the group structure of G:

- (Multiplication) $\mu: G \times G \to G$ with $\mu(x, y) = xy$
- (Inverses) $i: G \times G \to G$ with $i(x) = x^{-1}$
- (Identity) $e_G : \operatorname{Spec}(k) \to G$ with image e_G of G

are regular maps on the variety G.

Now that we have a proper definition for an *algebraic group*; we assume that G is an algebraic group throughout these notes unless stated otherwise.

We also have the following definitions / facts:

- We call G a *Linear Algebraic Group* if G is an affine variety.
- A connected ¹ algebraic group which is also complete is called and *abelian variety*.
- If $\varphi: G \to G'$ is a morphism of varieties between two algebraic groups G, G' such that φ is a group homomorphism, then we say that φ is a homomorphism of algebraic groups.
- A closed subgroup H of an algebraic group G is a closed subvariety of G which is also a subgroup of G.
- Given two algebraic groups G, G', the product $G \times G'$ with the group structure of a direct product is an algebraic group.

Definition 2. If we assume that $G = \operatorname{Spec} A$ for a finitely generated algebra A, (ie. G is a linear algebraic group with k[G] = A) the morphisms μ, i, e_G defined above induce the following algebra homomorphisms:

• μ induces $\Delta: k[G] \to k[G] \otimes k[G] = k[G \times G]$ (comultiplication)

¹By 'connected' I mean 'connected in the Zariski topology'. Perhaps this is obvious, but a connected algebraic group need not be connected as a Lie group. Take for example \mathbb{R}^{\times} , which is a connected algebraic group but is *not* connected as a Lie group.

- $i \text{ induces } 1: k[G] \to k[G] \text{ (antipode)}$
- e_G induces $\epsilon : k[G] \to k$ (coidentity)

A k-algebra A with morphisms defined as above is called a Hopf Algebra, which we will denote as k[G].

Recall that associated to an affine variety X, we have the *coordinate ring* of X- the global sections of the structure sheaf of X. The *Hopf algebra* associated to an algebraic group G is much like the coordinate ring of an affine variety, but also encodes information about the group structure of G.

Examples.

• $G = \mathbb{A}^1_k \cong k$ (The additive group, denoted \mathbb{G}_a)

In this case, k[G] = k[T] for some variable T. The Hopf algebra maps are the following:

 $-\Delta: k[T] \to k[T] \otimes k[T]$ given by $\Delta(T) = T \otimes 1 + 1 \otimes T$ (comultiplication)

 $- i: k[T] \rightarrow k[T]$ given by i(T) = -T (antipode)

- $-\epsilon: k[T] \to k$ given by $\epsilon(T) = 0$ (coidentity)
- G = A¹ \ {0} ≅ k[×] (The multiplicative group, denoted G_m) This is GL₁.
 Here, k[G] = k[T^{±1}]. The Hopf algebra maps are given by the following:
 - $-\Delta(T) = T \otimes T$

$$- i(T) = T^{-1}$$

$$-\epsilon(T) = 1$$

• $G = GL_2 = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid ad - bc \neq 0 \right\}.$

Here, G is a linear algebraic group. Notice that $G = \operatorname{Spec} A$, where $A = \frac{k[a,b,c,d,x]}{((ad-bc)\cdot x-1)}$.

• Any closed (under the Zariski topology) subgroup of GL_n

§2: Basic Properties of Algebraic Groups

Theorem 1. (Chevalley) Let G be an algebraic group. There exists a maximal linear algebraic subgroup G_{aff} of G; this subgroup is normal and the quotient G/G_{aff} is an abelian variety.

Proposition 1. Let G an algebraic group.

- 1. There exists a unique irreducible component G^0 of G containing the identity e_G . It is a closed normal subgroup of G, and has finite index. We call this the identity component of G.
- 2. The subgroup G^0 is the unique connected component containing e_G . The connected components and the irreducible components of G coincide.

3. Any closed subgroup of G with finite index contains G^0 .

Lemma 1. Let U, V be dense open subsets of G. Then, UV = G.

Lemma 2. Let H be a subgroup of G.

- The closure \overline{H} of H is a subgroup of G.
- If H contains a non-empty open subset of \overline{H} , then H is closed.

Proposition 2. Let $\phi : G \to G'$ a morphism of algebraic groups.

- The kernel ker ϕ is a closed normal subgroup.
- The image $\phi(G)$ is a closed subgroup of G.
- $\phi(G^0) = \phi(G)^0$.

Definition 3. Let H and K be subgroups of G. The subgroup generated by the commutators, i.e. elements of the form $hkh^{-1}k^{-1}$ is denoted by (H, K).

Proposition 3. If H and K are closed subgroups of G and one of H, K is connected, then (H, K) is closed and connected.

Examples. A few important examples of closed subgroups.

- Upper triangular matrices in GL_n .
- Diagonal matrices in GL_n .

§3: Actions on Varieties

Definition 4. Let X be a variety with an action of an algebraic group G.

- Let $a_X : G \times X \to X$ with $a_X(g, x) = g \cdot x$ be the map given by the action of G on X. We say that X is a G-variety, or a G-space if a_X is a morphism.
- A G-space with a transitive action (ie. for any $x, y \in X$ there exists $g \in G$ so that $g \cdot x = y$) of G is called a homogeneous space.
- A morphism $\phi : X \to Y$ between G-spaces is called equivariant if the following diagram commutes:

- Let X be a G-space and $x \in X$. The orbit of $x \in X$ is the image $G \cdot x = a_X (G \times \{x\})$. The isotropy group of $x \in X$ (or stabilizer of x) is the subgroup $G_x = \{g \in G \mid g \cdot x = x\}$.
- If X is a homogeneous space for the action of G, and all of the isotropy groups are trivial, then we say that X is a principal homogeneous space or a torsor.

Examples.

- The group G itself can be viewed as a G-space. To see this, let $a_G : G \times G \to G$ be given by $(g,h) \mapsto ghg^{-1}$. In this case, the orbits of the action are conjugacy classes, and the isotropy subgroups are centralizers.
- G can also act on itself via translation. Define $a_G : G \times G \to G$ by $(g, h) \mapsto gh$ (or $(g, h) \mapsto hg$). In this case, the action is transitive.
- Let V a finite dimensional vector space. Define $a_V : \operatorname{GL}(V) \times V \to V$ to be given by $(f, v) \mapsto f(v)$. This gives a $\operatorname{GL}(V)$ -space structure on V.

Lemma 3. Let X be a G-space.

- Any orbit is open in its closure.
- There is at least one closed orbit in X.

As expected, a *G*-space *X* with *X* affine descends to a map of algebras. Write X = Spec(k[X]). The action $a_X : G \times X \to X$ is given by a map $a_X^{\#} : k[X] \to k[G] \otimes k[X]$. We define a representation of abstract groups $r : G \to \text{GL}(k[X])$ defined by $(r(g)f)(x) = f(g^{-1}x)$. An element $g \in G$ gives a map $ev_g : k[G] \to k$, and we get the following composition:

$$r(g): k[X] \xrightarrow{a_X^{\#}} k[G] \otimes k[X] \xrightarrow{ev_{g^{-1}}} k \otimes k[X] = k[X].$$

Proposition 4. Let V a finite dimensional subspace of k[X].

- There is a finite dimensional subspace W of k[X] so that $V \subset W$ and W is stable under the action of r(g) for all $g \in G$.
- The subspace V is stable under the action of r(g) for all $g \in G$ if and only if $a_X^{\#}(V) \subset k[G] \otimes V$. If this is the case, then $r_V : G \times V \to V$ given by $(g, f) \mapsto (ev_g \otimes \mathrm{Id}) \circ a_X^{\#}(f)$ is a rational representation.

Of particular importance to us will be the action of G on k[G] via left and right translation. Notation. For $g \in G$, we define λ and ρ as follows:

$$\lambda(g): k[G] \to k[G] \qquad \rho(g): k[G] \to k[G].$$

These are just the the representations of G in GL(k[G]) induced by left and right translation respectively. More explicitly, for $g \in G$ and $f \in k[G]$, we have:

$$(\lambda(g)f)(x) = f(g^{-1}x)$$
 and $(\rho(g)f)(x) = f(xg),$

for all $x \in G$.² Notice that λ and ρ are faithful representations.

Theorem 2. (!!) Any linear algebraic group is a closed subgroup of GL_n for some n.

§4: Derivations & Tangent Spaces

Definition 5. Let R a commutative ring, A and R-algebra, and M and A-module. An R-derivation of A in M is a linear map $D: A \to M$ such that for all $a, b \in A$, we have the following:

$$D(ab) = aD(b) + D(a)b$$

We denote the set of all such derivations by $\text{Der}_R(A, M)$. Notice that $\text{Der}_R(A, M)$ is an A-module; in particular, if D, D' are derivations, then so is D+D'. Similarly, for any $a \in A$ and any derivation D, we have that aD is a derivation.

Proposition 5. Let $\phi : A \to B$ a morphism of *R*-algebras, and $\varphi : M \to N$ a morphism of modules.

- The map $\operatorname{Der}_R(B, M) \to \operatorname{Der}_R(A, M)$ given by $D \mapsto D \circ \phi$ is well defined. It is a morphism of A-modules, and its kernel is $\operatorname{Der}_A(B, M)$.
- The map $\operatorname{Der}_R(A, M) \to \operatorname{Der}_R(A, N)$ given by $D \mapsto \varphi \circ D$ is well defined and a morphism of A-modules.
- Given a multiplicative subset S of A, and M an $S^{-1}A$ -module, there is a natural isomorphism $\operatorname{Der}_R(S^{-1}A, N) \to \operatorname{Der}_R(A, N).$
- Let A_1, A_2 be two R-algebras. Write $A = A_1 \otimes_R A_2$ and M an A-module. Then, we have that

$$\operatorname{Der}_R(A, M) \cong \operatorname{Der}_R(A_1, M) \oplus \operatorname{Der}_R(A_2, M).$$

Definition 6. Let X an algebraic variety and $x \in X$. The tangent space of X at x is the vector space $\text{Der}_k(\mathcal{O}_{X,x}, k(x))$, where $k(x) := \mathcal{O}_{X,x}/\mathfrak{M}_{X,x}$. ³We write this as T_xX .

We have the following facts concerning derivations and tangent spaces.

- When X is an affine variety, we have that $T_x X = \text{Der}_k(k[X], k(x))$.
- Let $x \in X$ and $U \subset X$ and open subvariety with $x \in U$. Then, we have that $T_x U = T_x X$. (Since $\mathcal{O}_{U,x} = \mathcal{O}_{X,x}$)

²These are both left actions, despite their names.

³Notational remark: Given an algebraic variety X and $x \in X$, we know that $\mathcal{O}_{X,x}$ is a local ring. The notation $\mathfrak{M}_{X,x}$ is just the (unique) maximal ideal of $\mathcal{O}_{X,x}$.

• We have the following isomorphism: $T_x X \cong \left(\mathfrak{M}_{X,x}/\mathfrak{M}_{X,x}^2\right)^{\vee}$.

Proposition 6. Let $\phi : X \to Y$ a morphism of varieties.

- There exists a linear map $d_x\phi: T_xX \to T_{f(x)}Y$. This is the differential of ϕ at x.
- Let $\varphi: Y \to Z$ a morphism of varieties. Then, we have the following:

$$d_x(\varphi \circ \phi) = d_{f(x)}\varphi \circ d_x\phi.$$

- If ϕ is an isomorphism or the identity, then so is $d_x\phi$.
- If ϕ is a constant map, then $d_x \phi = 0$ for any $x \in X$.

Definition 7. The cotangent space of X at x is $\mathfrak{M}_{X,x}/\mathfrak{M}^2_{X,x}$. From the fact above, we see that it is isomorphic to $(T_xX)^{\vee}$.

Lemma 4. Let $\phi : X \to Y$ a closed immersion, then $d_x \phi$ is injective for any $x \in X$. Thus we are able to identify the tangent space $T_x X$ with a subspace of $T_{\phi(x)} Y$.

Proposition 7. Let X a closed subvariety of k^n and let I be the defining ideal of X. Assume also that I is generated by elements f_1, \ldots, f_r . Then, for all $x \in X$ we have the following:

$$T_x X = \bigcap_{k=1}^r \ker d_x f_k = \left\{ v \in k^n \mid \sum_{i=1}^n v_i \frac{\partial f_k}{\partial x_i}(x) = 0 \text{ for all } k \in [1, r] \right\}$$

Proposition 8. Let $\phi : X \times Y \to Z$ a morphism of varieties, and let $x \in X$ and $y \in Y$. Then, we have the isomorphism: $T_{(x,y)}X \times Y \cong T_xX \oplus T_yY$. Further, modulo this identification we have the following equality:

$$d_{(x,y)}X\phi = d_x\phi_y + d_y\phi_x$$

where $\phi_x: Y \to Z$ is given by $\phi_x(y) = \phi(x, y)$ and $\phi_y: X \to Z$ is given by $\phi_y(x) = \phi(x, y)$.

Definition 8. Let X a variety with $x \in X$, and $n \in \mathbb{Z}_{\geq 0}$. Notice that we can identify $\mathfrak{M}_{X,x}^{\vee}$ with:

$$\mathfrak{M}_{X,x}^{\vee} \cong \{ \phi \in \mathcal{O}_{X,x}^{\vee} \mid \phi(1) = 0 \}.$$

We define the following vector spaces:

$$\operatorname{Dist}_{n}(X, x) = \{ \phi \in \mathcal{O}_{X,x}^{\vee} \mid \phi \left(\mathfrak{M}_{X,x}^{n+1} \right) = 0 \} \cong \left(\mathcal{O}_{X,x}/\mathfrak{M}_{X,x}^{n+1} \right)^{\vee}$$
$$\operatorname{Dist}_{n}^{+}(X, x) = \{ \phi \in \operatorname{Dist}_{n}(X, x) \mid \phi(1) = 0 \} \cong \left(\mathfrak{M}_{X,x}/\mathfrak{M}_{X,x}^{n+1} \right)^{\vee}$$

Using this, we set:

$$\operatorname{Dist}(X, x) = \bigcup_{n} \operatorname{Dist}_{n}(X, x) \quad and \quad \operatorname{Dist}^{+}(X, x) = \bigcup_{n} \operatorname{Dist}_{n}^{+}(X, x).$$

The elements of Dist(X, x) are called the distributions of X with support in x. We have the identification $\text{Dist}_1^+(X, x) = T_x X$. Distributions provide an algebraic analogue of higher order differential operators on a differential manifold.

§5: The Lie Algebra of an Algebraic Group

Definition 9. A Lie algebra \mathfrak{g} is a vector space together with a bilinear map $[,]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ (a Lie bracket) satisfying the following properties:

- [x, x] = 0
- (Jacobi Identity) [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 for all $x, y, z \in \mathfrak{g}$.

Less precisely, given an algebraic group G, I think of the Lie algebra associated to G as being a vector space that is equal to the tangent space at e_G .

Definition 10. We have the following related definitions:

- 1. A morphism of Lie algebras is a linear map $\phi : \mathfrak{g} \to \mathfrak{g}'$ such that $\phi([x,y]) = [\phi(x),\phi(y)]$ for all $x, y \in \mathfrak{g}$. (In other words, the brackets on \mathfrak{g} and \mathfrak{g}' play along nicely with ϕ .)
- 2. A representation of a Lie algebra \mathfrak{g} in a vector space V is a morphism of Lie algebras $\mathfrak{g} \to \mathfrak{gl}(V) = \operatorname{End}_k(V)$ where $\mathfrak{gl}(V)$ has the Lie structure associated to the commutators.

Examples.

- 1. Consider $G = GL_n$. We view G as a subset of M_n ; $(n \times n \text{ matrices})$ in particular it is the complement of det = 0. G is an open subset of M_n , and thus the tangent space is all of M_n . In this case, the Lie bracket is [A, B] := AB BA.
- 2. If A is an associative algebra and

$$\operatorname{Der}_k(A) = \{ D \in \operatorname{End}_k(A) \mid D(ab) = aD(b) + D(a)b \},\$$

then $\operatorname{Der}_k(A)$, together with the bracket $[D, D'] = D \circ D' - D' \circ D$ is a Lie algebra.

Proposition 9. The left and right actions of G on $\mathfrak{gl}(k[G])$ preserve the subspace of derivations. Further, the subspace $\operatorname{Der}_k(k[G])^{\lambda(G)}$ of invariant derivations for the left action is a lie subalgebra of $\operatorname{Der}_k(k[G])$.

Definition 11. The Lie algebra L(G) of the group G is $\text{Der}_k(k[G])^{\lambda(G)}$.

We have the following facts:

- If H is a closed algebraic subgroup of G, then L(H) is a Lie subalgebra of L(G).
- The tangent space $T_{e_G}G$ is endowed with a Lie algebra structure which comes from the Lie algebra structure on L(G).
- There is a natural Lie algebra structure on Dist(G). The bracket is given by $[\eta, \xi] = \eta \xi \xi \eta$.
- The subspace $\text{Dist}_1^+(G)$ is stable under the Lie bracket given in the previous fact, so it is a Lie subalgebra of Dist(G). One can identify $\text{Dist}_1^+(G)$ with $T_{e_G}(G)$; the Lie algebra structures on these spaces agree.

• $\text{Dist}(G) = \text{Dist}(G^0)$, and $L(G) = L(G^0)$.

Definition 12. Let \mathfrak{g} be a finite dimensional Lie algebra. We define the universal enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g} as the following quotient:

$$U(\mathfrak{g}) = T(\mathfrak{g}) / \left(x \otimes y - y \otimes x - [x, y] \right),$$

for all $x, y \in \mathfrak{g}$. Here, $T(\mathfrak{g})$ denotes the tensor algebra constructed from \mathfrak{g} .

The universal enveloping algebra of a Lie group \mathfrak{g} can be though of as being the most general associative algebra containing all representations of \mathfrak{g} . To clarify this, we have the following proposition:

Proposition 10. Let $\tau : \mathfrak{g} \to U(\mathfrak{g})$ be the natural map.

- Let A an associative algebra and let $\phi : \mathfrak{g} \to A$ be a Lie algebra morphism, where the Lie bracket on A is [a,b] = ab ba. Then, there exists a unique algebra morphism $\Phi : U(\mathfrak{g}) \to A$ such that $\phi = \Phi \circ \tau$.
- There is an equivalence of categories between Rep(g), the category of Lie algebra representations of g, and Mod(U(g)), the category of U(g)-modules.

Theorem 3. (Poincare-Birkhoff-Witt) Given a basis of the Lie algebra \mathfrak{g} , a basis for the universal enveloping algebra $U(\mathfrak{g})$ can be created.

§6: Semisimple & Unipotent Elements

Note: In this section, you need to be careful about the case char(k) = p.

Definition 13. Let V be a vector space. We recall some definitions from linear algebra:

- 1. Any $x \in \text{End}(V)$ which is diagonalisable we will call semisimple. Equivalently, if the dimension of V is finite, the minimal polynomial is separable.
- 2. Any $x \in \text{End}(V)$ such that $x^n = 0$ for some $n \in \mathbb{Z}$ is called nilpotent. When x Id is nilpotent, we say x is unipotent.
- 3. Any $x \in \text{End}(V)$ such that for all $v \in V$, span $\{x^n(v) \mid n \in \mathbb{N}\}\$ has finite dimension is called locally finite.
- 4. Any $x \in \text{End}(V)$ such that for all $v \in V$ there exists $n \in \mathbb{Z}$ so that $x^n(v) = 0$ we will call locally nilpotent. Similarly, for $x \in \text{End}(V)$ such that Id x is locally nilpotent, we will call locally unipotent.

Theorem 4. (Additive Jordan Decomposition) Let $x \in \mathfrak{gl}(V)$ locally finite. Let $x \in \mathfrak{gl}(V)$ be locally finite.

1. There exists a unique decomposition $x = x_s + x_n$ in $\mathfrak{gl}(V)$ such that x_s is semisimple, x_n is nilpotent, and x_s commutes with x_n .

- 2. There exists polynomials p and q in k[T] such that $x_s = p(x)$ and $x_n = q(x)$. In particular, x_s and x_n commute with any endomorphism commuting with x.
- 3. If $U \subset W \subset V$ are subspaces such that $x(W) \subset U$, then x_s and x_n also map W into U.
- 4. If $x(W) \subset W$, then we have the following equalities: $(x \mid_W)_s = (x_s) \mid W$, $(x \mid_W)_n = (x_n) \mid_W$, $(x \mid_{V/W})_s = (x_s) \mid_{V/W}$, $(x \mid_{V/W})_n = (x_n) \mid_{V/W}$.

Note: We also have a **Multiplicative Jordan Decomposition**. In this case, we have the decomposition $x = x_s x_u$; x_n in the above Theorem is replaced with x_u , the unipotent part of x.

Definition 14. The elements x_s are called the semisimple part of $x \in \text{End}(V)$. Similarly, the elements x_n are called the nilpotent part of $x \in \text{End}(V)$. The decomposition $x = x_s + x_n$ is called the Jordan-Chevalley decomposition.

Definition 15. • Let $g \in G$. We call g semisimple if $g = g_s$, and g is unipotent if $g = g_u$.

- Let $\eta \in \mathfrak{g}$. We say that η is semisimple if $\eta = \eta_s$, and nilpotent if $\eta = \eta_n$.
- We denote the semisimple elements of G as G_s , and the unipotent elements in G by G_u . Similarly, we denote the semisimple elements of \mathfrak{g} as \mathfrak{g}_s and the nilpotent elements of \mathfrak{g} as \mathfrak{g}_n .

Definition 16. Let G an algebraic group.

- 1. We say that G is unipotent if $G = G_u$.
- 2. We say that G is diagonalizable if there exists a faithful representation $G \to GL(V)$ such that the image of G is contained in the subgroup of diagonal matrices.

Proposition 11. The following statements are equivalent.

- 1. G is diagonalizable.
- 2. G is a closed subgroup of \mathbb{G}_m^n .
- 3. G is commutative, and every element of G is semisimple.

To conclude the talk, we briefly discuss results concerning the structure of commutative groups, and a classification of algebraic groups of dimension one.

Theorem 5. (A structure theorem) Let G be a commutative group, and \mathfrak{g} its Lie algebra.

- G_s and G_u are closed subgroups of G, and are connected if G is connected. Additionally, the map $G_s \times G_u \to G$ given by $(x, y) \mapsto xy$ is an isomorphism. (The inverse is given by the Jordan decomposition)
- $L(G_s) = \mathfrak{g}_s, \ L(G_u) = \mathfrak{g}_u, \ and \ \mathfrak{g} = \mathfrak{g}_s \oplus \mathfrak{g}_u.$

Theorem 6. (A classification theorem) Let G be a connected algebraic group of dimension 1. Then, we have that $G = \mathbb{G}_m$ or $G = \mathbb{G}_a$.

References

- Hall, Brian C. Lie groups, Lie algebras, and representations. An elementary introduction. Graduate Texts in Mathematics, 222. Springer-Verlag, New York, 2003. xiv+351 pp. ISBN: 0-387-40122-9 MR1997306
- Hartshorne, Robin. Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977. xvi+496 pp. ISBN: 0-387-90244-9 MR0463157
- [3] Milne, J. S. Algebraic groups. The theory of group schemes of finite type over a field. Cambridge Studies in Advanced Mathematics, 170. *Cambridge University Press, Cambridge*, 2017. xvi+644 pp. ISBN: 978-1-107-16748-3 MR3729270
- [4] Perrin, Nicolas. Linear Algebraic Groups. http://www.hcm.uni-bonn.de/homepages/ prof-dr-nicolas-perrin/teaching/linear-algebraic-groups/