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§0: Notation € References ... ... ... o e e

Throughout these notes, I attempted to use notation consistent with Perrin’s notes. We let k
denote an algebraically closed field of arbitrary characteristic, although all of the examples will take
place in characteristic zero. We will take a variety to be a reduced separated scheme of finite type
over k.

The primary reference for these notes is [4]. (And [3] as a supplement) For facts concerning Lie
groups and Lie algebras, see [I], and for general algebraic geometry facts, [2] was used.

§1: What is an Algebraic Group? ... ... ...

Definition 1. An algebraic group is a variety G which is also a group. We require also that the
maps defining the group structure of G:

o (Multiplication) u : G x G — G with u(x,y) = vy

o (Inverses)i: G x G — G with i(z) = 7!

e (Identity) e : Spec(k) — G with image eq of G
are reqular maps on the variety G.

Now that we have a proper definition for an algebraic group; we assume that G is an algebraic
group throughout these notes unless stated otherwise.
We also have the following definitions / facts:

e We call G a Linear Algebraic Group if G is an affine variety.
e A connected [[] algebraic group which is also complete is called and abelian variety.

e If p: G — G’ is a morphism of varieties between two algebraic groups G, G’ such that ¢ is a
group homomorphism, then we say that ¢ is a homomorphism of algebraic groups.

o A closed subgroup H of an algebraic group G is a closed subvariety of G which is also a
subgroup of G.

e Given two algebraic groups G,G’, the product G x G’ with the group structure of a direct
product is an algebraic group.

Definition 2. If we assume that G = Spec A for a finitely generated algebra A, (ie. G is a linear
algebraic group with k|G| = A) the morphisms p,i,eq defined above induce the following algebra
homomorphisms:

o 1 induces A : k[G] — k[G] ® k|G| = k[G x G] (comultiplication)

!By ’connected’ I mean ’connected in the Zariski topology’. Perhaps this is obvious, but a connected algebraic
group need not be connected as a Lie group. Take for example R*, which is a connected algebraic group but is not
connected as a Lie group.
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e i induces1: k|G| — k[G] (antipode)

e c¢ induces € : k|G| — k (coidentity)
A k-algebra A with morphisms defined as above is called a Hopf Algebra, which we will denote as
k[G].

Recall that associated to an affine variety X, we have the coordinate ring of X- the global
sections of the structure sheaf of X. The Hopf algebra associated to an algebraic group G is much
like the coordinate ring of an affine variety, but also encodes information about the group structure
of G.

Examples.
e G =A] =k (The additive group, denoted G,)
In this case, k[G] = k[T] for some variable T'. The Hopf algebra maps are the following:
— A k[T] — K[T]| @ k[T] given by A(T) =T ® 1+ 1® T (comultiplication)
— 12 k[T] — k[T given by 1(T") = —T (antipode)
— €: k[T] — k given by €(T) = 0 (coidentity)
o G =AM\ {0} = k* (The multiplicative group, denoted G,,) This is GL;.
Here, k[G] = k[T*!]. The Hopf algebra maps are given by the following:

- AT)=T®T
—(T)=T7"
—€¢(T)=1

a b
0G—GL2—{<C d)|ad—bc7é0}.
Here, G is a linear algebraic group. Notice that G = Spec A, where A = %.

e Any closed (under the Zariski topology) subgroup of GL,

§2: Basic Properties of Algebraic GToOups ....... ... . oo

Theorem 1. (Chevalley) Let G be an algebraic group. There exists a mazimal linear algebraic
subgroup Gasp of G; this subgroup is normal and the quotient G/Gazy is an abelian variety.

Proposition 1. Let G an algebraic group.

1. There exists a unique irreducible component G° of G containing the identity eq. It is a closed
normal subgroup of G, and has finite index. We call this the identity component of G.

2. The subgroup G is the unique connected component containing eq. The connected components
and the irreducible components of G coincide.

2
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3. Any closed subgroup of G with finite index contains G°.

Lemma 1. Let U, V be dense open subsets of G. Then, UV = G.
Lemma 2. Let H be a subgroup of G.

o The closure H of H is a subgroup of G.

o If H contains a non-empty open subset of H, then H is closed.
Proposition 2. Let ¢ : G — G’ a morphism of algebraic groups.

o The kernel ker ¢ 1s a closed normal subgroup.

e The image ¢(G) is a closed subgroup of G.

o ¢(G°) = ¢(G)".

Definition 3. Let H and K be subgroups of G. The subgroup generated by the commutators, ie.
elements of the form hkh='k™1 is denoted by (H, K).

Proposition 3. If H and K are closed subgroups of G and one of H, K is connected, then (H, K)
15 closed and connected.

Examples. A few important examples of closed subgroups.
e Upper triangular matrices in GL,,.

e Diagonal matrices in GL,,.

835 ACtions on VATIETIES ... e

Definition 4. Let X be a variety with an action of an algebraic group G.

o Letay : Gx X — X with ax(g,z) = g-x be the map given by the action of G on X. We say
that X is a G-variety, or a G-space if ax is a morphism.

o A G-space with a transitive action (ie. for any x,y € X there exists g € G so that g-x =y)
of G 1s called a homogeneous space.

e A morphism ¢ : X — Y between G-spaces is called equivariant if the following diagram
commutes:

ax

GxX X

Ide Jqﬁ

GxY Y
ay
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o Let X be a G-space and x € X. The orbit of x € X is the image G - x = ax (G x {x}). The
isotropy group of © € X (or stabilizer of x) is the subgroup G, ={g € G| g-z = x}.

o [f X is a homogeneous space for the action of G, and all of the isotropy groups are trivial,
then we say that X is a principal homogeneous space or a torsor.

Examples.

e The group G itself can be viewed as a G-space. To see this, let ag : G X G — G be given by
(g,h) — ghg'. In this case, the orbits of the action are conjugacy classes, and the isotropy
subgroups are centralizers.

e G can also act on itself via translation. Define ag : GXG — G by (g, h) — gh (or (g, h) — hg).
In this case, the action is transitive.

e Let V a finite dimensional vector space. Define ay : GL(V) x V' — V to be given by
(f,v) = f(v). This gives a GL(V')-space structure on V.

Lemma 3. Let X be a G-space.
o Any orbit is open in its closure.
e There is at least one closed orbit in X.

As expected, a G-space X with X affine descends to a map of algebras. Write X = Spec(k[X]).
The action ay : G x X — X is given by a map a% : k[X] — k[G]® k[X]. We define a representation
of abstract groups r : G — GL(k[X]) defined by (r(g)f)(xz) = f(g7'x). An element g € G gives a
map ev, : k|G] — k, and we get the following composition:

#

a ev, , —

r(g) : k[X] k[G] ® k[X] ——

k® k[X] = k[X].

Proposition 4. Let V a finite dimensional subspace of k[X].

o There is a finite dimensional subspace W of k[ X]| so that V-C W and W is stable under the
action of r(g) for all g € G.

o The subspace V' is stable under the action of r(g) for all g € G if and only ifcf((V) C k[G]®V.
If this is the case, then ry : G X V. — V' given by (g, f) — (ev, ® Id) o a%(f) is a rational
representation.

Of particular importance to us will be the action of G' on k|G| via left and right translation.

Notation. For g € GG, we define A and p as follows:

Ag) - KIGT = K[G]  plg) : KIG] = K[G].
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These are just the the representations of G in GL (k[G]) induced by left and right translation
respectively. More explicitly, for g € G and f € k|G|, we have:

Mg f) (@) =f(g7'z) and  (p(g)f) (x) = f(zg),

for all x € G. H Notice that A and p are faithful representations.

Theorem 2. (!!) Any linear algebraic group is a closed subgroup of GL,, for some n.

84 Derivations € Tangent SPACES . ... ... ...

Definition 5. Let R a commutative ring, A and R-algebra, and M and A-module. An R-derivation
of A in M is a linear map D : A — M such that for all a,b € A, we have the following:

D(ab) = aD(b) + D(a)b

We denote the set of all such derivations by Derg(A, M). Notice that Derg(A, M) is an A-module;
in particular, if D, D" are derivations, then so is D+D'. Similarly, for any a € A and any derivation
D, we have that aD 1is a derivation.

Proposition 5. Let ¢ : A — B a morphism of R-algebras, and ¢ : M — N a morphism of modules.

e The map Derg(B, M) — Derr(A, M) given by D — D o ¢ is well defined. It is a morphism
of A-modules, and its kernel is Dera(B, M).

e The map Derg(A, M) — Derg(A, N) given by D — @ o D is well defined and a morphism of
A-modules.

e Given a multiplicative subset S of A, and M an S~'A-module, there is a natural isomorphism

Derg (S7'A, N) — Dergr(A, N).
o Let Ay, As be two R-algebras. Write A = Ay ®g Ay and M an A-module. Then, we have that
Derg(A, M) = Derg(Ay, M) @ Derg(Ay, M).
Definition 6. Let X an algebraic variety and x € X. The tangent space of X at x is the vector
space Dery (Ox ., k(x)), where k(z) := Oxo/Mx .. HW@ write this as T, X .
We have the following facts concerning derivations and tangent spaces.
e When X is an affine variety, we have that T, X = Dery, (k[X], k(x)).

o Let x € X and U C X and open subvariety with € U. Then, we have that T,U = T, X.
(Since Oy, = Ox )

2These are both left actions, despite their names.
3Notational remark: Given an algebraic variety X and x € X, we know that Oy, is a local ring. The notation
Mx 5 is just the (unique) maximal ideal of Ox ;.
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e We have the following isomorphism: 7, X = (fmx,x / fmgm)v
Proposition 6. Let ¢ : X — Y a morphism of varieties.
e There exists a linear map dy¢ : T, X — Ty)Y . This is the differential of ¢ at .

o Let oY — Z a morphism of varieties. Then, we have the following:
d:c(QO o ¢) - df(:(:)SD © d;r¢

o If ¢ is an isomorphism or the identity, then so is d,¢.
o If ¢ is a constant map, then d,¢ =0 for any x € X.

Definition 7. The cotangent space of X at x is zmh/zmg(w From the fact above, we see that it
is isomorphic to (T, X)".

Lemma 4. Let ¢ : X — Y a closed immersion, then d,¢ is injective for any x € X. Thus we are
able to identify the tangent space T, X with a subspace of Ty)Y .

Proposition 7. Let X a closed subvariety of k™ and let I be the defining ideal of X. Assume also
that I is generated by elements f1,..., f.. Then, for all x € X we have the following:

T.X = ﬂkerdwfk = {vek”|;vig—ﬁ(x):0f0rallke[1,r]}

Proposition 8. Let ¢ : X XY — Z a morphism of varieties, and let v € X and y € Y. Then, we
have the isomorphism: T, )X XY =T, X & T,Y. Further, modulo this identification we have the
following equality:

d(z,y)ng = dx¢y + dy¢$

where ¢, Y — Z is given by ¢.(y) = ¢(z,y) and ¢, : X — Z is given by ¢ (x) = ¢(z,y).
Definition 8. Let X a variety with v € X, and n € Zxo. Notice that we can identify My, , with:
My = {d € Ox, | ¢(1) =0}.
We define the following vector spaces:
Dist, (X, z) = {6 € O%, | ¢ (M51)) = 0} = (O /)"
Dist,’ (X, 2) = {¢ € Dist,(X,2) | ¢(1) = 0} = (Mx,./M3)"
Using this, we set:
Dist(X, z) = UDistn(X, r) and Distt(X,z) = UDist:{(X, T).
The elements of Dist(X,x) are called the distributions of X with support in x. We have the

identification Dist{ (X, x) = T,X. Distributions provide an algebraic analogue of higher order
differential operators on a differential manifold.
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§5: The Lie Algebra of an Algebraic Group ......... ... . . e

Definition 9. A Lie algebra g is a vector space together with a bilinear map [,]: g X g — g (a Lie
bracket ) satisfying the following properties:

o [z,2]=0
o (Jacobi Identity) [z, [y, z]] + [z, [z, y]] + [y, [z, 2]] = O for all z,y,z € g.

Less precisely, given an algebraic group G, I think of the Lie algebra associated to G as being a
vector space that is equal to the tangent space at eg.

Definition 10. We have the following related definitions:

1. A morphism of Lie algebras is a linear map ¢ : g — ¢ such that ¢ ([z,y]) = [¢p(x), ¢(y)] for
all z,y € g. (In other words, the brackets on g and g play along nicely with ¢.)

2. A representation of a Lie algebra g in a vector space V' is a morphism of Lie algebras g —
gl(V) = Endy (V) where gl(V') has the Lie structure associated to the commutators.

Examples.

1. Consider G = GL,,. We view G as a subset of M,; (n X n matrices) in particular it is the

complement of det = 0. G is an open subset of M,,, and thus the tangent space is all of M,,.
In this case, the Lie bracket is [A, B] := AB — BA.

2. If A is an associative algebra and
Deri(A) = {D € Endy(A) | D(ab) = aD(b) + D(a)b},

then Dery(A), together with the bracket [D, D'] = Do D' — D' o D is a Lie algebra.

Proposition 9. The left and right actions of G on gl(k|G]) preserve the subspace of derivations.
Further, the subspace Dery,(k[G))M®) of invariant derivations for the left action is a lie subalgebra

of Derg(k[G]).
Definition 11. The Lie algebra L(G) of the group G is Dery(k[G])M).
We have the following facts:
o If H is a closed algebraic subgroup of G, then L(H) is a Lie subalgebra of L(G).

e The tangent space T, .G is endowed with a Lie algebra structure which comes from the Lie
algebra structure on L(G).

e There is a natural Lie algebra structure on Dist(G). The bracket is given by [n,&] = n& — &n.

e The subspace Dist{ (@) is stable under the Lie bracket given in the previous fact, so it is a Lie
subalgebra of Dist(G). One can identify Dist{ (G) with T,.(G); the Lie algebra structures on
these spaces agree.
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e Dist(G) = Dist(G?), and L(G) = L(G°).

Definition 12. Let g be a finite dimensional Lie algebra. We define the universal enveloping
algebra U(g) of g as the following quotient:

Ulg) =T(g)/ (z@y—y®@x—[z,y]),
for all x,y € g. Here, T(g) denotes the tensor algebra constructed from g.

The universal enveloping algebra of a Lie group g can be though of as being the most gen-
eral associative algebra containing all representations of g. To clarify this, we have the following
proposition:

Proposition 10. Let 7: g — U(g) be the natural map.

o Let A an associative algebra and let ¢ : g — A be a Lie algebra morphism, where the Lie
bracket on A is [a,b] = ab — ba. Then, there exists a unique algebra morphism ® : U(g) — A
such that ¢ = ®orT.

e There is an equivalence of categories between Rep(g), the category of Lie algebra representa-
tions of g, and Mod(U(g)), the category of U(g)-modules.

Theorem 3. (Poincare-Birkhoff-Witt) Given a basis of the Lie algebra g, a basis for the universal
enveloping algebra U(g) can be created.

86: Semisimple € Unipotent Elements ... ... ...

Note: In this section, you need to be careful about the case char(k) = p.
Definition 13. Let V' be a vector space. We recall some definitions from linear algebra:

1. Any x € End(V') which is diagonalisable we will call semisimple. Equivalently, if the dimen-
sion of V' is finite, the minimal polynomial is separable.

2. Any © € End(V) such that 2" = 0 for some n € Z is called nilpotent. When = — Id is
nilpotent, we say x is unipotent.

3. Any x € End(V') such that for all v € V', span{z™(v) | n € N} has finite dimension is called
locally finite.

4. Any x € End(V') such that for all v € V there exists n € Z so that 2" (v) = 0 we will call
locally nilpotent. Similarly, for x € End(V) such that Id —x is locally nilpotent, we will call
locally unipotent.

Theorem 4. (Additive Jordan Decomposition) Let = € gl(V') locally finite. Let x € gl(V') be locally
finite.

1. There ezists a unique decomposition x = x5+ x,, in gl(V') such that x4 is semisimple, x, is
nilpotent, and xs commutes with x,,.
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2. There exists polynomials p and q in k[T] such that xs = p(z) and x,, = q(z). In particular, x
and x, commute with any endomorphism commuting with x.

3. IfU CW CV are subspaces such that (W) C U, then x5 and x,, also map W into U.

4. If (W) C W, then we have the following equalities: (x |w)s = (xs) | W, (z |w)n = (T0) |w,
(z ‘V/W)s = (7s) |V/W; (z ’V/W)n = () |V/W-

Note: We also have a Multiplicative Jordan Decomposition. In this case, we have the
decomposition x = x,x,; T, in the above Theorem is replaced with z,, the unipotent part of x.

Definition 14. The elements x5 are called the semisimple part of x € End(V). Similarly, the
elements x,, are called the nilpotent part of x € End(V'). The decomposition x = x5 + x,, is called
the Jordan-Chevalley decomposition.

Definition 15. e Let g € GG. We call g semisimple if g = g5, and g is unipotent if g = g,.
o Letn € g. We say that n is semisimple if n = 15, and nilpotent if n = n,.

o We denote the semisimple elements of G as G, and the unipotent elements in G by G,.
Similarly, we denote the semisimple elements of g as gs and the nilpotent elements of g as g,.

Definition 16. Let G an algebraic group.

1. We say that G is unipotent if G = G,.

2. We say that G is diagonalizable if there exists a faithful representation G — GL(V') such that
the image of G is contained in the subgroup of diagonal matrices.

Proposition 11. The following statements are equivalent.
1. G is diagonalizable.
2. G is a closed subgroup of GI',.
3. G is commutative, and every element of G is semisimple.

To conclude the talk, we briefly discuss results concerning the structure of commutative groups,
and a classification of algebraic groups of dimension one.

Theorem 5. (A structure theorem) Let G be a commutative group, and g its Lie algebra.

e GG, and G, are closed subgroups of GG, and are connected if G is connected. Additionally, the
map Gs x G, — G given by (x,y) — zy is an isomorphism. (The inverse is given by the
Jordan decomposition)

o L(Gs)=9s, L(Gy) = gu, and g = gs D gu.

Theorem 6. (A classification theorem) Let G be a connected algebraic group of dimension 1. Then,
we have that G = G,, or G = G,.
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