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§0: Notation & References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Throughout these notes, I attempted to use notation consistent with Perrin’s notes. We let k
denote an algebraically closed field of arbitrary characteristic, although all of the examples will take
place in characteristic zero. We will take a variety to be a reduced separated scheme of finite type
over k.

The primary reference for these notes is [4]. (And [3] as a supplement) For facts concerning Lie
groups and Lie algebras, see [1], and for general algebraic geometry facts, [2] was used.

§1: What is an Algebraic Group? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition 1. An algebraic group is a variety G which is also a group. We require also that the
maps defining the group structure of G:

• (Multiplication) µ : G×G→ G with µ(x, y) = xy

• (Inverses) i : G×G→ G with i(x) = x−1

• (Identity) eG : Spec(k)→ G with image eG of G

are regular maps on the variety G.

Now that we have a proper definition for an algebraic group; we assume that G is an algebraic
group throughout these notes unless stated otherwise.

We also have the following definitions / facts:

• We call G a Linear Algebraic Group if G is an affine variety.

• A connected 1 algebraic group which is also complete is called and abelian variety.

• If ϕ : G→ G′ is a morphism of varieties between two algebraic groups G,G′ such that ϕ is a
group homomorphism, then we say that ϕ is a homomorphism of algebraic groups.

• A closed subgroup H of an algebraic group G is a closed subvariety of G which is also a
subgroup of G.

• Given two algebraic groups G,G′, the product G × G′ with the group structure of a direct
product is an algebraic group.

Definition 2. If we assume that G = SpecA for a finitely generated algebra A, (ie. G is a linear
algebraic group with k[G] = A) the morphisms µ, i, eG defined above induce the following algebra
homomorphisms:

• µ induces ∆ : k[G]→ k[G]⊗ k[G] = k[G×G] (comultiplication)

1By ’connected’ I mean ’connected in the Zariski topology’. Perhaps this is obvious, but a connected algebraic
group need not be connected as a Lie group. Take for example R×, which is a connected algebraic group but is not
connected as a Lie group.
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• i induces ı : k[G]→ k[G] (antipode)

• eG induces ε : k[G]→ k (coidentity)

A k-algebra A with morphisms defined as above is called a Hopf Algebra, which we will denote as
k[G].

Recall that associated to an affine variety X, we have the coordinate ring of X- the global
sections of the structure sheaf of X. The Hopf algebra associated to an algebraic group G is much
like the coordinate ring of an affine variety, but also encodes information about the group structure
of G.

Examples.

• G = A1
k
∼= k (The additive group, denoted Ga)

In this case, k[G] = k[T ] for some variable T . The Hopf algebra maps are the following:

– ∆ : k[T ]→ k[T ]⊗ k[T ] given by ∆(T ) = T ⊗ 1 + 1⊗ T (comultiplication)

– ı : k[T ]→ k[T ] given by ı(T ) = −T (antipode)

– ε : k[T ]→ k given by ε(T ) = 0 (coidentity)

• G = A1 \ {0} ∼= k× (The multiplicative group, denoted Gm) This is GL1.

Here, k[G] = k[T±1]. The Hopf algebra maps are given by the following:

– ∆(T ) = T ⊗ T
– ı(T ) = T−1

– ε(T ) = 1

• G = GL2 =

{(
a b
c d

)
| ad− bc 6= 0

}
.

Here, G is a linear algebraic group. Notice that G = SpecA, where A = k[a,b,c,d,x]
((ad−bc)·x−1) .

• Any closed (under the Zariski topology) subgroup of GLn

§2: Basic Properties of Algebraic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theorem 1. (Chevalley) Let G be an algebraic group. There exists a maximal linear algebraic
subgroup Gaff of G; this subgroup is normal and the quotient G/Gaff is an abelian variety.

Proposition 1. Let G an algebraic group.

1. There exists a unique irreducible component G0 of G containing the identity eG. It is a closed
normal subgroup of G, and has finite index. We call this the identity component of G.

2. The subgroup G0 is the unique connected component containing eG. The connected components
and the irreducible components of G coincide.
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3. Any closed subgroup of G with finite index contains G0.

Lemma 1. Let U , V be dense open subsets of G. Then, UV = G.

Lemma 2. Let H be a subgroup of G.

• The closure H of H is a subgroup of G.

• If H contains a non-empty open subset of H, then H is closed.

Proposition 2. Let φ : G→ G′ a morphism of algebraic groups.

• The kernel kerφ is a closed normal subgroup.

• The image φ(G) is a closed subgroup of G.

• φ(G0) = φ(G)0.

Definition 3. Let H and K be subgroups of G. The subgroup generated by the commutators, ie.
elements of the form hkh−1k−1 is denoted by (H,K).

Proposition 3. If H and K are closed subgroups of G and one of H, K is connected, then (H,K)
is closed and connected.

Examples. A few important examples of closed subgroups.

• Upper triangular matrices in GLn.

• Diagonal matrices in GLn.

§3: Actions on Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition 4. Let X be a variety with an action of an algebraic group G.

• Let aX : G×X → X with aX(g, x) = g · x be the map given by the action of G on X. We say
that X is a G-variety, or a G-space if aX is a morphism.

• A G-space with a transitive action (ie. for any x, y ∈ X there exists g ∈ G so that g · x = y)
of G is called a homogeneous space.

• A morphism φ : X → Y between G-spaces is called equivariant if the following diagram
commutes:

G×X X

G× Y Y

aX

aY

φId×φ
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• Let X be a G-space and x ∈ X. The orbit of x ∈ X is the image G · x = aX (G× {x}). The
isotropy group of x ∈ X (or stabilizer of x) is the subgroup Gx = {g ∈ G | g · x = x}.

• If X is a homogeneous space for the action of G, and all of the isotropy groups are trivial,
then we say that X is a principal homogeneous space or a torsor.

Examples.

• The group G itself can be viewed as a G-space. To see this, let aG : G×G→ G be given by
(g, h) 7→ ghg−1. In this case, the orbits of the action are conjugacy classes, and the isotropy
subgroups are centralizers.

• G can also act on itself via translation. Define aG : G×G→ G by (g, h) 7→ gh (or (g, h) 7→ hg).
In this case, the action is transitive.

• Let V a finite dimensional vector space. Define aV : GL(V ) × V → V to be given by
(f, v) 7→ f(v). This gives a GL(V )-space structure on V .

Lemma 3. Let X be a G-space.

• Any orbit is open in its closure.

• There is at least one closed orbit in X.

As expected, a G-space X with X affine descends to a map of algebras. Write X = Spec(k[X]).
The action aX : G×X → X is given by a map a#X : k[X]→ k[G]⊗k[X]. We define a representation
of abstract groups r : G → GL(k[X]) defined by (r(g)f)(x) = f(g−1x). An element g ∈ G gives a
map evg : k[G]→ k, and we get the following composition:

r(g) : k[X] k[G]⊗ k[X] k ⊗ k[X] = k[X].
a#X evg−1

Proposition 4. Let V a finite dimensional subspace of k[X].

• There is a finite dimensional subspace W of k[X] so that V ⊂ W and W is stable under the
action of r(g) for all g ∈ G.

• The subspace V is stable under the action of r(g) for all g ∈ G if and only if a#X(V ) ⊂ k[G]⊗V .
If this is the case, then rV : G × V → V given by (g, f) 7→ (evg ⊗ Id) ◦ a#X(f) is a rational
representation.

Of particular importance to us will be the action of G on k[G] via left and right translation.

Notation. For g ∈ G, we define λ and ρ as follows:

λ(g) : k[G]→ k[G] ρ(g) : k[G]→ k[G].
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These are just the the representations of G in GL (k[G]) induced by left and right translation
respectively. More explicitly, for g ∈ G and f ∈ k[G], we have:

(λ(g)f) (x) = f
(
g−1x

)
and (ρ(g)f) (x) = f(xg),

for all x ∈ G. 2 Notice that λ and ρ are faithful representations.

Theorem 2. (!!) Any linear algebraic group is a closed subgroup of GLn for some n.

§4: Derivations & Tangent Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition 5. Let R a commutative ring, A and R-algebra, and M and A-module. An R-derivation
of A in M is a linear map D : A→M such that for all a, b ∈ A, we have the following:

D(ab) = aD(b) +D(a)b

We denote the set of all such derivations by DerR(A,M). Notice that DerR(A,M) is an A-module;
in particular, if D,D′ are derivations, then so is D+D′. Similarly, for any a ∈ A and any derivation
D, we have that aD is a derivation.

Proposition 5. Let φ : A→ B a morphism of R-algebras, and ϕ : M → N a morphism of modules.

• The map DerR(B,M) → DerR(A,M) given by D 7→ D ◦ φ is well defined. It is a morphism
of A-modules, and its kernel is DerA(B,M).

• The map DerR(A,M)→ DerR(A,N) given by D 7→ ϕ ◦D is well defined and a morphism of
A-modules.

• Given a multiplicative subset S of A, and M an S−1A-module, there is a natural isomorphism
DerR (S−1A,N)→ DerR(A,N).

• Let A1, A2 be two R-algebras. Write A = A1⊗R A2 and M an A-module. Then, we have that

DerR(A,M) ∼= DerR(A1,M)⊕DerR(A2,M).

Definition 6. Let X an algebraic variety and x ∈ X. The tangent space of X at x is the vector
space Derk (OX,x, k(x)), where k(x) := OX,x/MX,x. 3We write this as TxX.

We have the following facts concerning derivations and tangent spaces.

• When X is an affine variety, we have that TxX = Derk (k[X], k(x)).

• Let x ∈ X and U ⊂ X and open subvariety with x ∈ U . Then, we have that TxU = TxX.
(Since OU,x = OX,x)

2These are both left actions, despite their names.
3Notational remark: Given an algebraic variety X and x ∈ X, we know that OX,x is a local ring. The notation

MX,x is just the (unique) maximal ideal of OX,x.
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• We have the following isomorphism: TxX ∼=
(
MX,x/M

2
X,x

)∨
.

Proposition 6. Let φ : X → Y a morphism of varieties.

• There exists a linear map dxφ : TxX → Tf(x)Y . This is the differential of φ at x.

• Let ϕ : Y → Z a morphism of varieties. Then, we have the following:

dx(ϕ ◦ φ) = df(x)ϕ ◦ dxφ.

• If φ is an isomorphism or the identity, then so is dxφ.

• If φ is a constant map, then dxφ = 0 for any x ∈ X.

Definition 7. The cotangent space of X at x is MX,x/M
2
X,x. From the fact above, we see that it

is isomorphic to (TxX)∨.

Lemma 4. Let φ : X → Y a closed immersion, then dxφ is injective for any x ∈ X. Thus we are
able to identify the tangent space TxX with a subspace of Tφ(x)Y .

Proposition 7. Let X a closed subvariety of kn and let I be the defining ideal of X. Assume also
that I is generated by elements f1, . . . , fr. Then, for all x ∈ X we have the following:

TxX =
r⋂

k=1

ker dxfk =

{
v ∈ kn |

n∑
i=1

vi
∂fk
∂xi

(x) = 0 for all k ∈ [1, r]

}
Proposition 8. Let φ : X × Y → Z a morphism of varieties, and let x ∈ X and y ∈ Y . Then, we
have the isomorphism: T(x,y)X × Y ∼= TxX ⊕ TyY. Further, modulo this identification we have the
following equality:

d(x,y)Xφ = dxφy + dyφx

where φx : Y → Z is given by φx(y) = φ(x, y) and φy : X → Z is given by φy(x) = φ(x, y).

Definition 8. Let X a variety with x ∈ X, and n ∈ Z≥0. Notice that we can identify M∨
X,x with:

M∨
X,x
∼= {φ ∈ O∨X,x | φ(1) = 0}.

We define the following vector spaces:

Distn(X, x) = {φ ∈ O∨X,x | φ
(
Mn+1

X,x

)
= 0} ∼=

(
OX,x/Mn+1

X,x

)∨
Dist+n (X, x) = {φ ∈ Distn(X, x) | φ(1) = 0} ∼=

(
MX,x/M

n+1
X,x

)∨
Using this, we set:

Dist(X, x) =
⋃
n

Distn(X, x) and Dist+(X, x) =
⋃
n

Dist+n (X, x).

The elements of Dist(X, x) are called the distributions of X with support in x. We have the
identification Dist+1 (X, x) = TxX. Distributions provide an algebraic analogue of higher order
differential operators on a differential manifold.
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§5: The Lie Algebra of an Algebraic Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition 9. A Lie algebra g is a vector space together with a bilinear map [, ] : g× g→ g (a Lie
bracket) satisfying the following properties:

• [x, x] = 0

• (Jacobi Identity) [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 for all x, y, z ∈ g.

Less precisely, given an algebraic group G, I think of the Lie algebra associated to G as being a
vector space that is equal to the tangent space at eG.

Definition 10. We have the following related definitions:

1. A morphism of Lie algebras is a linear map φ : g → g′ such that φ ([x, y]) = [φ(x), φ(y)] for
all x, y ∈ g. (In other words, the brackets on g and g′ play along nicely with φ.)

2. A representation of a Lie algebra g in a vector space V is a morphism of Lie algebras g →
gl(V ) = Endk(V ) where gl(V ) has the Lie structure associated to the commutators.

Examples.

1. Consider G = GLn. We view G as a subset of Mn; (n × n matrices) in particular it is the
complement of det = 0. G is an open subset of Mn, and thus the tangent space is all of Mn.
In this case, the Lie bracket is [A,B] := AB −BA.

2. If A is an associative algebra and

Derk(A) = {D ∈ Endk(A) | D(ab) = aD(b) +D(a)b},

then Derk(A), together with the bracket [D,D′] = D ◦D′ −D′ ◦D is a Lie algebra.

Proposition 9. The left and right actions of G on gl(k[G]) preserve the subspace of derivations.
Further, the subspace Derk(k[G])λ(G) of invariant derivations for the left action is a lie subalgebra
of Derk(k[G]).

Definition 11. The Lie algebra L(G) of the group G is Derk(k[G])λ(G).

We have the following facts:

• If H is a closed algebraic subgroup of G, then L(H) is a Lie subalgebra of L(G).

• The tangent space TeGG is endowed with a Lie algebra structure which comes from the Lie
algebra structure on L(G).

• There is a natural Lie algebra structure on Dist(G). The bracket is given by [η, ξ] = ηξ − ξη.

• The subspace Dist+1 (G) is stable under the Lie bracket given in the previous fact, so it is a Lie
subalgebra of Dist(G). One can identify Dist+1 (G) with TeG(G); the Lie algebra structures on
these spaces agree.
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• Dist(G) = Dist(G0), and L(G) = L(G0).

Definition 12. Let g be a finite dimensional Lie algebra. We define the universal enveloping
algebra U(g) of g as the following quotient:

U(g) = T (g)/ (x⊗ y − y ⊗ x− [x, y]) ,

for all x, y ∈ g. Here, T (g) denotes the tensor algebra constructed from g.

The universal enveloping algebra of a Lie group g can be though of as being the most gen-
eral associative algebra containing all representations of g. To clarify this, we have the following
proposition:

Proposition 10. Let τ : g→ U(g) be the natural map.

• Let A an associative algebra and let φ : g → A be a Lie algebra morphism, where the Lie
bracket on A is [a, b] = ab− ba. Then, there exists a unique algebra morphism Φ : U(g)→ A
such that φ = Φ ◦ τ .

• There is an equivalence of categories between Rep(g), the category of Lie algebra representa-
tions of g, and Mod(U(g)), the category of U(g)-modules.

Theorem 3. (Poincare-Birkhoff-Witt) Given a basis of the Lie algebra g, a basis for the universal
enveloping algebra U(g) can be created.

§6: Semisimple & Unipotent Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note: In this section, you need to be careful about the case char(k) = p.

Definition 13. Let V be a vector space. We recall some definitions from linear algebra:

1. Any x ∈ End(V ) which is diagonalisable we will call semisimple. Equivalently, if the dimen-
sion of V is finite, the minimal polynomial is separable.

2. Any x ∈ End(V ) such that xn = 0 for some n ∈ Z is called nilpotent. When x − Id is
nilpotent, we say x is unipotent.

3. Any x ∈ End(V ) such that for all v ∈ V , span{xn(v) | n ∈ N} has finite dimension is called
locally finite.

4. Any x ∈ End(V ) such that for all v ∈ V there exists n ∈ Z so that xn(v) = 0 we will call
locally nilpotent. Similarly, for x ∈ End(V ) such that Id−x is locally nilpotent, we will call
locally unipotent.

Theorem 4. (Additive Jordan Decomposition) Let x ∈ gl(V ) locally finite. Let x ∈ gl(V ) be locally
finite.

1. There exists a unique decomposition x = xs + xn in gl(V ) such that xs is semisimple, xn is
nilpotent, and xs commutes with xn.

8



Spherical Varieties Seminar - 6/1/2018 A.Lamarche

2. There exists polynomials p and q in k[T ] such that xs = p(x) and xn = q(x). In particular, xs
and xn commute with any endomorphism commuting with x.

3. If U ⊂ W ⊂ V are subspaces such that x(W ) ⊂ U , then xs and xn also map W into U .

4. If x(W ) ⊂ W , then we have the following equalities: (x |W )s = (xs) | W , (x |W )n = (xn) |W ,
(x |V/W )s = (xs) |V/W , (x |V/W )n = (xn) |V/W .

Note: We also have a Multiplicative Jordan Decomposition. In this case, we have the
decomposition x = xsxu; xn in the above Theorem is replaced with xu, the unipotent part of x.

Definition 14. The elements xs are called the semisimple part of x ∈ End(V ). Similarly, the
elements xn are called the nilpotent part of x ∈ End(V ). The decomposition x = xs + xn is called
the Jordan-Chevalley decomposition.

Definition 15. • Let g ∈ G. We call g semisimple if g = gs, and g is unipotent if g = gu.

• Let η ∈ g. We say that η is semisimple if η = ηs, and nilpotent if η = ηn.

• We denote the semisimple elements of G as Gs, and the unipotent elements in G by Gu.
Similarly, we denote the semisimple elements of g as gs and the nilpotent elements of g as gn.

Definition 16. Let G an algebraic group.

1. We say that G is unipotent if G = Gu.

2. We say that G is diagonalizable if there exists a faithful representation G→ GL(V ) such that
the image of G is contained in the subgroup of diagonal matrices.

Proposition 11. The following statements are equivalent.

1. G is diagonalizable.

2. G is a closed subgroup of Gn
m.

3. G is commutative, and every element of G is semisimple.

To conclude the talk, we briefly discuss results concerning the structure of commutative groups,
and a classification of algebraic groups of dimension one.

Theorem 5. (A structure theorem) Let G be a commutative group, and g its Lie algebra.

• Gs and Gu are closed subgroups of G, and are connected if G is connected. Additionally, the
map Gs × Gu → G given by (x, y) 7→ xy is an isomorphism. (The inverse is given by the
Jordan decomposition)

• L(Gs) = gs, L(Gu) = gu, and g = gs ⊕ gu.

Theorem 6. (A classification theorem) Let G be a connected algebraic group of dimension 1. Then,
we have that G = Gm or G = Ga.
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