§0: Notation ξ^{3} References

Throughout these notes, I attempted to use notation consistent with Perrin's notes. We let k denote an algebraically closed field of arbitrary characteristic, although all of the examples will take place in characteristic zero. We will take a variety to be a reduced separated scheme of finite type over k.

The primary reference for these notes is [4]. (And [3] as a supplement) For facts concerning Lie groups and Lie algebras, see [1], and for general algebraic geometry facts, [2] was used.
§1: What is an Algebraic Group?

Definition 1. An algebraic group is a variety G which is also a group. We require also that the maps defining the group structure of G :

- (Multiplication) $\mu: G \times G \rightarrow G$ with $\mu(x, y)=x y$
- (Inverses) $i: G \times G \rightarrow G$ with $i(x)=x^{-1}$
- (Identity) $e_{G}: \operatorname{Spec}(k) \rightarrow G$ with image e_{G} of G
are regular maps on the variety G.
Now that we have a proper definition for an algebraic group; we assume that G is an algebraic group throughout these notes unless stated otherwise.

We also have the following definitions / facts:

- We call G a Linear Algebraic Group if G is an affine variety.
- A connected ${ }^{1}$ algebraic group which is also complete is called and abelian variety.
- If $\varphi: G \rightarrow G^{\prime}$ is a morphism of varieties between two algebraic groups G, G^{\prime} such that φ is a group homomorphism, then we say that φ is a homomorphism of algebraic groups.
- A closed subgroup H of an algebraic group G is a closed subvariety of G which is also a subgroup of G.
- Given two algebraic groups G, G^{\prime}, the product $G \times G^{\prime}$ with the group structure of a direct product is an algebraic group.

Definition 2. If we assume that $G=\operatorname{Spec} A$ for a finitely generated algebra A, (ie. G is a linear algebraic group with $k[G]=A$) the morphisms μ, i, e_{G} defined above induce the following algebra homomorphisms:

- μ induces $\Delta: k[G] \rightarrow k[G] \otimes k[G]=k[G \times G]$ (comultiplication)

[^0]- i induces $1: k[G] \rightarrow k[G]$ (antipode)
- e_{G} induces $\epsilon: k[G] \rightarrow k$ (coidentity)

A k-algebra A with morphisms defined as above is called a Hopf Algebra, which we will denote as $k[G]$.

Recall that associated to an affine variety X, we have the coordinate ring of X - the global sections of the structure sheaf of X. The Hopf algebra associated to an algebraic group G is much like the coordinate ring of an affine variety, but also encodes information about the group structure of G.

Examples.

- $G=\mathbb{A}_{k}^{1} \cong k$ (The additive group, denoted \mathbb{G}_{a})

In this case, $k[G]=k[T]$ for some variable T. The Hopf algebra maps are the following:
$-\Delta: k[T] \rightarrow k[T] \otimes k[T]$ given by $\Delta(T)=T \otimes 1+1 \otimes T$ (comultiplication)
$-\imath: k[T] \rightarrow k[T]$ given by $1(T)=-T$ (antipode)
$-\epsilon: k[T] \rightarrow k$ given by $\epsilon(T)=0$ (coidentity)

- $G=\mathbb{A}^{1} \backslash\{0\} \cong k^{\times}$(The multiplicative group, denoted \mathbb{G}_{m}) This is GL_{1}.

Here, $k[G]=k\left[T^{ \pm 1}\right]$. The Hopf algebra maps are given by the following:
$-\Delta(T)=T \otimes T$
$-\imath(T)=T^{-1}$
$-\epsilon(T)=1$

- $G=\mathrm{GL}_{2}=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a d-b c \neq 0\right\}$.

Here, G is a linear algebraic group. Notice that $G=\operatorname{Spec} A$, where $A=\frac{k[a, b, c, d, x]}{((a d-b c) \cdot x-1)}$.

- Any closed (under the Zariski topology) subgroup of GL_{n}
§2: Basic Properties of Algebraic Groups \qquad
Theorem 1. (Chevalley) Let G be an algebraic group. There exists a maximal linear algebraic subgroup $G_{\text {aff }}$ of G; this subgroup is normal and the quotient $G / G_{a f f}$ is an abelian variety.

Proposition 1. Let G an algebraic group.

1. There exists a unique irreducible component G^{0} of G containing the identity e_{G}. It is a closed normal subgroup of G, and has finite index. We call this the identity component of G.
2. The subgroup G^{0} is the unique connected component containing e_{G}. The connected components and the irreducible components of G coincide.
3. Any closed subgroup of G with finite index contains G^{0}.

Lemma 1. Let U, V be dense open subsets of G. Then, $U V=G$.
Lemma 2. Let H be a subgroup of G.

- The closure \bar{H} of H is a subgroup of G.
- If H contains a non-empty open subset of \bar{H}, then H is closed.

Proposition 2. Let $\phi: G \rightarrow G^{\prime}$ a morphism of algebraic groups.

- The kernel $\operatorname{ker} \phi$ is a closed normal subgroup.
- The image $\phi(G)$ is a closed subgroup of G.
- $\phi\left(G^{0}\right)=\phi(G)^{0}$.

Definition 3. Let H and K be subgroups of G. The subgroup generated by the commutators, ie. elements of the form $h k h^{-1} k^{-1}$ is denoted by (H, K).

Proposition 3. If H and K are closed subgroups of G and one of H, K is connected, then (H, K) is closed and connected.

Examples. A few important examples of closed subgroups.

- Upper triangular matrices in GL_{n}.
- Diagonal matrices in GL_{n}.
§3: Actions on Varieties \qquad
Definition 4. Let X be a variety with an action of an algebraic group G.
- Let $a_{X}: G \times X \rightarrow X$ with $a_{X}(g, x)=g \cdot x$ be the map given by the action of G on X. We say that X is a G-variety, or a G-space if a_{X} is a morphism.
- A G-space with a transitive action (ie. for any $x, y \in X$ there exists $g \in G$ so that $g \cdot x=y$) of G is called a homogeneous space.
- A morphism $\phi: X \rightarrow Y$ between G-spaces is called equivariant if the following diagram commutes:

- Let X be a G-space and $x \in X$. The orbit of $x \in X$ is the image $G \cdot x=a_{X}(G \times\{x\})$. The isotropy group of $x \in X$ (or stabilizer of x) is the subgroup $G_{x}=\{g \in G \mid g \cdot x=x\}$.
- If X is a homogeneous space for the action of G, and all of the isotropy groups are trivial, then we say that X is a principal homogeneous space or a torsor.

Examples.

- The group G itself can be viewed as a G-space. To see this, let $a_{G}: G \times G \rightarrow G$ be given by $(g, h) \mapsto g h g^{-1}$. In this case, the orbits of the action are conjugacy classes, and the isotropy subgroups are centralizers.
- G can also act on itself via translation. Define $a_{G}: G \times G \rightarrow G$ by $(g, h) \mapsto g h($ or $(g, h) \mapsto h g)$. In this case, the action is transitive.
- Let V a finite dimensional vector space. Define $a_{V}: \mathrm{GL}(V) \times V \rightarrow V$ to be given by $(f, v) \mapsto f(v)$. This gives a GL (V)-space structure on V.

Lemma 3. Let X be a G-space.

- Any orbit is open in its closure.
- There is at least one closed orbit in X.

As expected, a G-space X with X affine descends to a map of algebras. Write $X=\operatorname{Spec}(k[X])$. The action $a_{X}: G \times X \rightarrow X$ is given by a map $a_{X}^{\#}: k[X] \rightarrow k[G] \otimes k[X]$. We define a representation of abstract groups $r: G \rightarrow \mathrm{GL}(k[X])$ defined by $(r(g) f)(x)=f\left(g^{-1} x\right)$. An element $g \in G$ gives a map $e v_{g}: k[G] \rightarrow k$, and we get the following composition:

$$
r(g): k[X] \xrightarrow{a_{X}^{\#}} k[G] \otimes k[X] \xrightarrow{e v_{g^{-1}}} k \otimes k[X]=k[X] .
$$

Proposition 4. Let V a finite dimensional subspace of $k[X]$.

- There is a finite dimensional subspace W of $k[X]$ so that $V \subset W$ and W is stable under the action of $r(g)$ for all $g \in G$.
- The subspace V is stable under the action of $r(g)$ for all $g \in G$ if and only if $a_{X}^{\#}(V) \subset k[G] \otimes V$. If this is the case, then $r_{V}: G \times V \rightarrow V$ given by $(g, f) \mapsto\left(e v_{g} \otimes I d\right) \circ a_{X}^{\#}(f)$ is a rational representation.

Of particular importance to us will be the action of G on $k[G]$ via left and right translation.
Notation. For $g \in G$, we define λ and ρ as follows:

$$
\lambda(g): k[G] \rightarrow k[G] \quad \rho(g): k[G] \rightarrow k[G] .
$$

These are just the the representations of G in $G L(k[G])$ induced by left and right translation respectively. More explicitly, for $g \in G$ and $f \in k[G]$, we have:

$$
(\lambda(g) f)(x)=f\left(g^{-1} x\right) \quad \text { and } \quad(\rho(g) f)(x)=f(x g)
$$

for all $x \in G$. ${ }^{2}$ Notice that λ and ρ are faithful representations.

Theorem 2. (!!) Any linear algebraic group is a closed subgroup of GL_{n} for some n.
§4: Derivations \& Tangent Spaces

Definition 5. Let R a commutative ring, A and R-algebra, and M and A-module. An R-derivation of A in M is a linear map $D: A \rightarrow M$ such that for all $a, b \in A$, we have the following:

$$
D(a b)=a D(b)+D(a) b
$$

We denote the set of all such derivations by $\operatorname{Der}_{R}(A, M)$. Notice that $\operatorname{Der}_{R}(A, M)$ is an A-module; in particular, if D, D^{\prime} are derivations, then so is $D+D^{\prime}$. Similarly, for any $a \in A$ and any derivation D, we have that $a D$ is a derivation.

Proposition 5. Let $\phi: A \rightarrow B$ a morphism of R-algebras, and $\varphi: M \rightarrow N$ a morphism of modules.

- The map $\operatorname{Der}_{R}(B, M) \rightarrow \operatorname{Der}_{R}(A, M)$ given by $D \mapsto D \circ \phi$ is well defined. It is a morphism of A-modules, and its kernel is $\operatorname{Der}_{A}(B, M)$.
- The map $\operatorname{Der}_{R}(A, M) \rightarrow \operatorname{Der}_{R}(A, N)$ given by $D \mapsto \varphi \circ D$ is well defined and a morphism of A-modules.
- Given a multiplicative subset S of A, and M an $S^{-1} A$-module, there is a natural isomorphism $\operatorname{Der}_{R}\left(S^{-1} A, N\right) \rightarrow \operatorname{Der}_{R}(A, N)$.
- Let A_{1}, A_{2} be two R-algebras. Write $A=A_{1} \otimes_{R} A_{2}$ and M an A-module. Then, we have that

$$
\operatorname{Der}_{R}(A, M) \cong \operatorname{Der}_{R}\left(A_{1}, M\right) \oplus \operatorname{Der}_{R}\left(A_{2}, M\right)
$$

Definition 6. Let X an algebraic variety and $x \in X$. The tangent space of X at x is the vector space $\operatorname{Der}_{k}\left(\mathcal{O}_{X, x}, k(x)\right)$, where $k(x):=\mathcal{O}_{X, x} / \mathfrak{M}_{X, x} \cdot{ }^{3}$ We write this as $T_{x} X$.

We have the following facts concerning derivations and tangent spaces.

- When X is an affine variety, we have that $T_{x} X=\operatorname{Der}_{k}(k[X], k(x))$.
- Let $x \in X$ and $U \subset X$ and open subvariety with $x \in U$. Then, we have that $T_{x} U=T_{x} X$. (Since $\mathcal{O}_{U, x}=\mathcal{O}_{X, x}$)

[^1]- We have the following isomorphism: $T_{x} X \cong\left(\mathfrak{M}_{X, x} / \mathfrak{M}_{X, x}^{2}\right)^{\vee}$.

Proposition 6. Let $\phi: X \rightarrow Y$ a morphism of varieties.

- There exists a linear map $d_{x} \phi: T_{x} X \rightarrow T_{f(x)} Y$. This is the differential of ϕ at x.
- Let $\varphi: Y \rightarrow Z$ a morphism of varieties. Then, we have the following:

$$
d_{x}(\varphi \circ \phi)=d_{f(x)} \varphi \circ d_{x} \phi
$$

- If ϕ is an isomorphism or the identity, then so is $d_{x} \phi$.
- If ϕ is a constant map, then $d_{x} \phi=0$ for any $x \in X$.

Definition 7. The cotangent space of X at x is $\mathfrak{M}_{X, x} / \mathfrak{M}_{X, x}^{2}$. From the fact above, we see that it is isomorphic to $\left(T_{x} X\right)^{\vee}$.

Lemma 4. Let $\phi: X \rightarrow Y$ a closed immersion, then $d_{x} \phi$ is injective for any $x \in X$. Thus we are able to identify the tangent space $T_{x} X$ with a subspace of $T_{\phi(x)} Y$.

Proposition 7. Let X a closed subvariety of k^{n} and let I be the defining ideal of X. Assume also that I is generated by elements f_{1}, \ldots, f_{r}. Then, for all $x \in X$ we have the following:

$$
T_{x} X=\bigcap_{k=1}^{r} \operatorname{ker} d_{x} f_{k}=\left\{v \in k^{n} \left\lvert\, \sum_{i=1}^{n} v_{i} \frac{\partial f_{k}}{\partial x_{i}}(x)=0\right. \text { for all } k \in[1, r]\right\}
$$

Proposition 8. Let $\phi: X \times Y \rightarrow Z$ a morphism of varieties, and let $x \in X$ and $y \in Y$. Then, we have the isomorphism: $T_{(x, y)} X \times Y \cong T_{x} X \oplus T_{y} Y$. Further, modulo this identification we have the following equality:

$$
d_{(x, y)} X \phi=d_{x} \phi_{y}+d_{y} \phi_{x}
$$

where $\phi_{x}: Y \rightarrow Z$ is given by $\phi_{x}(y)=\phi(x, y)$ and $\phi_{y}: X \rightarrow Z$ is given by $\phi_{y}(x)=\phi(x, y)$.
Definition 8. Let X a variety with $x \in X$, and $n \in \mathbb{Z}_{\geq 0}$. Notice that we can identify $\mathfrak{M}_{X, x}^{\vee}$ with:

$$
\mathfrak{M}_{X, x}^{\vee} \cong\left\{\phi \in \mathcal{O}_{X, x}^{\vee} \mid \phi(1)=0\right\} .
$$

We define the following vector spaces:

$$
\begin{gathered}
\operatorname{Dist}_{n}(X, x)=\left\{\phi \in \mathcal{O}_{X, x}^{\vee} \mid \phi\left(\mathfrak{M}_{X, x}^{n+1}\right)=0\right\} \cong\left(\mathcal{O}_{X, x} / \mathfrak{M}_{X, x}^{n+1}\right)^{\vee} \\
\operatorname{Dist}_{n}^{+}(X, x)=\left\{\phi \in \operatorname{Dist}_{n}(X, x) \mid \phi(1)=0\right\} \cong\left(\mathfrak{M}_{X, x} / \mathfrak{M}_{X, x}^{n+1}\right)^{\vee}
\end{gathered}
$$

Using this, we set:

$$
\operatorname{Dist}(X, x)=\bigcup_{n} \operatorname{Dist}_{n}(X, x) \quad \text { and } \quad \operatorname{Dist}^{+}(X, x)=\bigcup_{n} \operatorname{Dist}_{n}^{+}(X, x)
$$

The elements of $\operatorname{Dist}(X, x)$ are called the distributions of X with support in x. We have the identification Dist ${ }_{1}^{+}(X, x)=T_{x} X$. Distributions provide an algebraic analogue of higher order differential operators on a differential manifold.
§5: The Lie Algebra of an Algebraic Group
Definition 9. A Lie algebra \mathfrak{g} is a vector space together with a bilinear map [,]: $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ (a Lie bracket) satisfying the following properties:

- $[x, x]=0$
- (Jacobi Identity) $[x,[y, z]]+[z,[x, y]]+[y,[z, x]]=0$ for all $x, y, z \in \mathfrak{g}$.

Less precisely, given an algebraic group G, I think of the Lie algebra associated to G as being a vector space that is equal to the tangent space at e_{G}.

Definition 10. We have the following related definitions:

1. A morphism of Lie algebras is a linear map $\phi: \mathfrak{g} \rightarrow \mathfrak{g}^{\prime}$ such that $\phi([x, y])=[\phi(x), \phi(y)]$ for all $x, y \in \mathfrak{g}$. (In other words, the brackets on \mathfrak{g} and \mathfrak{g}^{\prime} play along nicely with ϕ.)
2. A representation of a Lie algebra \mathfrak{g} in a vector space V is a morphism of Lie algebras $\mathfrak{g} \rightarrow$ $\mathfrak{g l}(V)=\operatorname{End}_{k}(V)$ where $\mathfrak{g l}(V)$ has the Lie structure associated to the commutators.

Examples.

1. Consider $G=\mathrm{GL}_{n}$. We view G as a subset of $M_{n} ;(n \times n$ matrices $)$ in particular it is the complement of det $=0 . G$ is an open subset of M_{n}, and thus the tangent space is all of M_{n}. In this case, the Lie bracket is $[A, B]:=A B-B A$.
2. If A is an associative algebra and

$$
\operatorname{Der}_{k}(A)=\left\{D \in \operatorname{End}_{k}(A) \mid D(a b)=a D(b)+D(a) b\right\}
$$

then $\operatorname{Der}_{k}(A)$, together with the bracket $\left[D, D^{\prime}\right]=D \circ D^{\prime}-D^{\prime} \circ D$ is a Lie algebra.

Proposition 9. The left and right actions of G on $\mathfrak{g l}(k[G])$ preserve the subspace of derivations. Further, the subspace $\operatorname{Der}_{k}(k[G])^{\lambda(G)}$ of invariant derivations for the left action is a lie subalgebra of $\operatorname{Der}_{k}(k[G])$.
Definition 11. The Lie algebra $L(G)$ of the group G is $\operatorname{Der}_{k}(k[G])^{\lambda(G)}$.
We have the following facts:

- If H is a closed algebraic subgroup of G, then $L(H)$ is a Lie subalgebra of $L(G)$.
- The tangent space $T_{e_{G}} G$ is endowed with a Lie algebra structure which comes from the Lie algebra structure on $L(G)$.
- There is a natural Lie algebra structure on $\operatorname{Dist}(G)$. The bracket is given by $[\eta, \xi]=\eta \xi-\xi \eta$.
- The subspace $\operatorname{Dist}_{1}^{+}(G)$ is stable under the Lie bracket given in the previous fact, so it is a Lie subalgebra of $\operatorname{Dist}(G)$. One can identify $\operatorname{Dist}_{1}^{+}(G)$ with $T_{e_{G}}(G)$; the Lie algebra structures on these spaces agree.
- $\operatorname{Dist}(G)=\operatorname{Dist}\left(G^{0}\right)$, and $L(G)=L\left(G^{0}\right)$.

Definition 12. Let \mathfrak{g} be a finite dimensional Lie algebra. We define the universal enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g} as the following quotient:

$$
U(\mathfrak{g})=T(\mathfrak{g}) /(x \otimes y-y \otimes x-[x, y]),
$$

for all $x, y \in \mathfrak{g}$. Here, $T(\mathfrak{g})$ denotes the tensor algebra constructed from \mathfrak{g}.
The universal enveloping algebra of a Lie group \mathfrak{g} can be though of as being the most general associative algebra containing all representations of \mathfrak{g}. To clarify this, we have the following proposition:

Proposition 10. Let $\tau: \mathfrak{g} \rightarrow U(\mathfrak{g})$ be the natural map.

- Let A an associative algebra and let $\phi: \mathfrak{g} \rightarrow A$ be a Lie algebra morphism, where the Lie bracket on A is $[a, b]=a b-b a$. Then, there exists a unique algebra morphism $\Phi: U(\mathfrak{g}) \rightarrow A$ such that $\phi=\Phi \circ \tau$.
- There is an equivalence of categories between $\operatorname{Rep}(\mathfrak{g})$, the category of Lie algebra representations of \mathfrak{g}, and $\operatorname{Mod}(U(\mathfrak{g}))$, the category of $U(\mathfrak{g})$-modules.

Theorem 3. (Poincare-Birkhoff-Witt) Given a basis of the Lie algebra \mathfrak{g}, a basis for the universal enveloping algebra $U(\mathfrak{g})$ can be created.
§6: Semisimple ξ Unipotent Elements
Note: In this section, you need to be careful about the case $\operatorname{char}(k)=p$.
Definition 13. Let V be a vector space. We recall some definitions from linear algebra:

1. Any $x \in \operatorname{End}(V)$ which is diagonalisable we will call semisimple. Equivalently, if the dimension of V is finite, the minimal polynomial is separable.
2. Any $x \in \operatorname{End}(V)$ such that $x^{n}=0$ for some $n \in \mathbb{Z}$ is called nilpotent. When $x-\operatorname{Id}$ is nilpotent, we say x is unipotent.
3. Any $x \in \operatorname{End}(V)$ such that for all $v \in V$, $\operatorname{span}\left\{x^{n}(v) \mid n \in \mathbb{N}\right\}$ has finite dimension is called locally finite.
4. Any $x \in \operatorname{End}(V)$ such that for all $v \in V$ there exists $n \in \mathbb{Z}$ so that $x^{n}(v)=0$ we will call locally nilpotent. Similarly, for $x \in \operatorname{End}(V)$ such that $\operatorname{Id}-x$ is locally nilpotent, we will call locally unipotent.

Theorem 4. (Additive Jordan Decomposition) Let $x \in \mathfrak{g l}(V)$ locally finite. Let $x \in \mathfrak{g l}(V)$ be locally finite.

1. There exists a unique decomposition $x=x_{s}+x_{n}$ in $\mathfrak{g l}(V)$ such that x_{s} is semisimple, x_{n} is nilpotent, and x_{s} commutes with x_{n}.
2. There exists polynomials p and q in $k[T]$ such that $x_{s}=p(x)$ and $x_{n}=q(x)$. In particular, x_{s} and x_{n} commute with any endomorphism commuting with x.
3. If $U \subset W \subset V$ are subspaces such that $x(W) \subset U$, then x_{s} and x_{n} also map W into U.
4. If $x(W) \subset W$, then we have the following equalities: $\left(\left.x\right|_{W}\right)_{s}=\left(x_{s}\right)\left|W,\left(\left.x\right|_{W}\right)_{n}=\left(x_{n}\right)\right|_{W}$, $\left(\left.x\right|_{V / W}\right)_{s}=\left.\left(x_{s}\right)\right|_{V / W},\left(\left.x\right|_{V / W}\right)_{n}=\left.\left(x_{n}\right)\right|_{V / W}$.

Note: We also have a Multiplicative Jordan Decomposition. In this case, we have the decomposition $x=x_{s} x_{u} ; x_{n}$ in the above Theorem is replaced with x_{u}, the unipotent part of x.

Definition 14. The elements x_{s} are called the semisimple part of $x \in \operatorname{End}(V)$. Similarly, the elements x_{n} are called the nilpotent part of $x \in \operatorname{End}(V)$. The decomposition $x=x_{s}+x_{n}$ is called the Jordan-Chevalley decomposition.

Definition 15. - Let $g \in G$. We call g semisimple if $g=g_{s}$, and g is unipotent if $g=g_{u}$.

- Let $\eta \in \mathfrak{g}$. We say that η is semisimple if $\eta=\eta_{s}$, and nilpotent if $\eta=\eta_{n}$.
- We denote the semisimple elements of G as G_{s}, and the unipotent elements in G by G_{u}. Similarly, we denote the semisimple elements of \mathfrak{g} as \mathfrak{g}_{s} and the nilpotent elements of \mathfrak{g} as \mathfrak{g}_{n}.

Definition 16. Let G an algebraic group.

1. We say that G is unipotent if $G=G_{u}$.
2. We say that G is diagonalizable if there exists a faithful representation $G \rightarrow \mathrm{GL}(V)$ such that the image of G is contained in the subgroup of diagonal matrices.

Proposition 11. The following statements are equivalent.

1. G is diagonalizable.
2. G is a closed subgroup of \mathbb{G}_{m}^{n}.
3. G is commutative, and every element of G is semisimple.

To conclude the talk, we briefly discuss results concerning the structure of commutative groups, and a classification of algebraic groups of dimension one.

Theorem 5. (A structure theorem) Let G be a commutative group, and \mathfrak{g} its Lie algebra.

- G_{s} and G_{u} are closed subgroups of G, and are connected if G is connected. Additionally, the map $G_{s} \times G_{u} \rightarrow G$ given by $(x, y) \mapsto x y$ is an isomorphism. (The inverse is given by the Jordan decomposition)
- $L\left(G_{s}\right)=\mathfrak{g}_{s}, L\left(G_{u}\right)=\mathfrak{g}_{u}$, and $\mathfrak{g}=\mathfrak{g}_{s} \oplus \mathfrak{g}_{u}$.

Theorem 6. (A classification theorem) Let G be a connected algebraic group of dimension 1. Then, we have that $G=\mathbb{G}_{m}$ or $G=\mathbb{G}_{a}$.

References

[1] Hall, Brian C. Lie groups, Lie algebras, and representations. An elementary introduction. Graduate Texts in Mathematics, 222. Springer-Verlag, New York, 2003. xiv+351 pp. ISBN: 0-387-40122-9 MR1997306
[2] Hartshorne, Robin. Algebraic geometry. Graduate Texts in Mathematics, No. 52. SpringerVerlag, New York-Heidelberg, 1977. xvi+496 pp. ISBN: 0-387-90244-9 MR0463157
[3] Milne, J. S. Algebraic groups. The theory of group schemes of finite type over a field. Cambridge Studies in Advanced Mathematics, 170. Cambridge University Press, Cambridge, 2017. xvi+644 pp. ISBN: 978-1-107-16748-3 MR3729270
[4] Perrin, Nicolas. Linear Algebraic Groups. http://www.hcm.uni-bonn.de/homepages/ prof-dr-nicolas-perrin/teaching/linear-algebraic-groups/

[^0]: ${ }^{1}$ By 'connected' I mean 'connected in the Zariski topology'. Perhaps this is obvious, but a connected algebraic group need not be connected as a Lie group. Take for example \mathbb{R}^{\times}, which is a connected algebraic group but is not connected as a Lie group.

[^1]: ${ }^{2}$ These are both left actions, despite their names.
 ${ }^{3}$ Notational remark: Given an algebraic variety X and $x \in X$, we know that $\mathcal{O}_{X, x}$ is a local ring. The notation $\mathfrak{M}_{X, x}$ is just the (unique) maximal ideal of $\mathcal{O}_{X, x}$.

