4.3: Global Maxima and Minima

2.5: Marginal Cost and Revenue

4.4: Profit, Cost, and Revenue

Maximizing Profit

Maximizing Revenue

Math 122

Ann Clifton

University of South Carolina, Columbia, SC USA

Calculus for Business Administration and Social Sciences
4.3: Global Maxima and Minima

Maximizing Profit
Maximizing Revenue
4.3: Global Maxima and Minima

2.5: Marginal Cost and Revenue
OUTLINE

1. 4.3: GLOBAL MAXIMA AND MINIMA

2. 2.5: MARGINAL COST AND REVENUE

3. 4.4: PROFIT, COST, AND REVENUE
 - Maximizing Profit
 - Maximizing Revenue
DEFINITION 1

For any function, f, we say
GLOBAL EXTREMA

Definition 1

For any function, f, we say

- f has a *global minimum* at p if $f(p) \leq f(x)$ for all x in the domain of f.

Theorem 1

If f is a continuous function defined on a closed interval, $[a, b]$, then f has a global minimum and a global maximum on $[a, b]$.

Global Extrema

Definition 1

For any function, f, we say

- f has a *global minimum* at p if $f(p) \leq f(x)$ for all x in the domain of f.

- f has a *global maximum* at p if $f(x) \leq f(p)$ for all x in the domain of f.
Global Extrema

Definition 1

For any function, f, we say

- f has a *global minimum* at p if $f(p) \leq f(x)$ for all x in the domain of f.
- f has a *global maximum* at p if $f(x) \leq f(p)$ for all x in the domain of f.

Theorem 1

*If f is a continuous function defined on a closed interval, $[a, b]$, then f has a global minimum and a global maximum on $[a, b]$.***
Example

Find the global extrema of \(f(x) = x^3 - 9x^2 - 48x + 52 \) on \([-5, 14]\).
Example

Find the global extrema of \(f(x) = x^3 - 9x^2 - 48x + 52 \) on \([-5, 14]\).

\[
f'(x) = 3x^2 - 18x - 48
\]
Example

Find the global extrema of \(f(x) = x^3 - 9x^2 - 48x + 52 \) on \([-5, 14]\).

\[
f'(x) = 3x^2 - 18x - 48 = 3(x^2 - 6x - 16)
\]

\[
\Rightarrow f'(x) = 3(x + 2)(x - 8)
\]

\[
\Rightarrow f''(x) = 6x - 18
\]

\[
\Rightarrow f''(-2) = 6(-2) - 18 < 0
\]

\[
\Rightarrow f''(8) = 6(8) - 18 > 0
\]

\[
f(-5) = -58
\]

\[
f(14) = 360
\]

\[
f(-2) = 104
\]

\[
f(8) = -396
\]

Maximum: \((14, 360)\).

Minimum: \((-2, 104)\).
Find the global extrema of $f(x) = x^3 - 9x^2 - 48x + 52$ on $[-5, 14]$.

$$f'(x) = 3x^2 - 18x - 48 = 3(x^2 - 6x - 16)$$
$$= 3(x + 2)(x - 8)$$

Maximum: $(14, 360)$.
Minimum: $(8, -396)$.
Find the global extrema of \(f(x) = x^3 - 9x^2 - 48x + 52 \) on \([-5, 14]\).

\[
f'(x) = 3x^2 - 18x - 48 = 3(x^2 - 6x - 16) = 3(x + 2)(x - 8)
\]

\[
f''(x) = 6x - 18 = 6(x - 3)
\]
Example

Find the global extrema of \(f(x) = x^3 - 9x^2 - 48x + 52 \) on \([-5, 14]\).

\[
f'(x) = 3x^2 - 18x - 48 = 3(x^2 - 6x - 16)
= 3(x + 2)(x - 8)
\]

\[
f''(x) = 6x - 18 = 6(x - 3)
\Rightarrow f''(-2) = 6(-2 - 3) < 0
\]
Example

Find the global extrema of \(f(x) = x^3 - 9x^2 - 48x + 52 \) on \([-5, 14]\).

\[
\begin{align*}
 f'(x) &= 3x^2 - 18x - 48 = 3(x^2 - 6x - 16) \\
&= 3(x + 2)(x - 8) \\
 f''(x) &= 6x - 18 = 6(x - 3) \\
\Rightarrow f''(-2) &= 6(-2 - 3) < 0 \\
\Rightarrow f''(8) &= 6(8 - 3) > 0.
\end{align*}
\]
EXAMPLE

Find the global extrema of \(f(x) = x^3 - 9x^2 - 48x + 52 \) on \([-5, 14]\).

\[
f'(x) = 3x^2 - 18x - 48 = 3(x^2 - 6x - 16) = 3(x + 2)(x - 8)
\]

\[
f''(x) = 6x - 18 = 6(x - 3)
\]

\[\Rightarrow f''(-2) = 6(-2 - 3) < 0\]

\[\Rightarrow f''(8) = 6(8 - 3) > 0.\]

\[f(-5) = -58\]
Example

Find the global extrema of \(f(x) = x^3 - 9x^2 - 48x + 52 \) on \([-5, 14]\).

\[
\begin{align*}
 f'(x) &= 3x^2 - 18x - 48 = 3(x^2 - 6x - 16) \\
 &= 3(x + 2)(x - 8) \\
 f''(x) &= 6x - 18 = 6(x - 3) \\
 \Rightarrow f''(-2) &= 6(-2 - 3) < 0 \\
 \Rightarrow f''(8) &= 6(8 - 3) > 0.
\end{align*}
\]

\[
\begin{align*}
 f(-5) &= -58 \\
 f(14) &= 360
\end{align*}
\]
Example

Find the global extrema of \(f(x) = x^3 - 9x^2 - 48x + 52 \) on \([-5, 14]\).

\[
f'(x) = 3x^2 - 18x - 48 = 3(x^2 - 6x - 16) = 3(x + 2)(x - 8)
\]

\[
f''(x) = 6x - 18 = 6(x - 3)
\]

\[\Rightarrow f''(-2) = 6(-2 - 3) < 0\]

\[\Rightarrow f''(8) = 6(8 - 3) > 0.\]

\[
f(-5) = -58
\]

\[
f(14) = 360
\]

\[
f(-2) = 104
\]
Example

Find the global extrema of \(f(x) = x^3 - 9x^2 - 48x + 52 \) on \([-5, 14]\).

\[
f'(x) = 3x^2 - 18x - 48 = 3(x^2 - 6x - 16)
= 3(x + 2)(x - 8)
\]
\[
f''(x) = 6x - 18 = 6(x - 3)
\]
\[\Rightarrow f''(-2) = 6(-2 - 3) < 0
\]
\[\Rightarrow f''(8) = 6(8 - 3) > 0.
\]
\[
f(-5) = -58
\]
\[
f(14) = 360
\]
\[
f(-2) = 104
\]
\[
f(8) = -396.
\]
Find the global extrema of \(f(x) = x^3 - 9x^2 - 48x + 52 \) on \([-5, 14]\).

\[
\begin{align*}
f'(x) &= 3x^2 - 18x - 48 = 3(x^2 - 6x - 16) \\
&= 3(x + 2)(x - 8) \\
f''(x) &= 6x - 18 = 6(x - 3)
\end{align*}
\]

\[
\begin{align*}
\Rightarrow f''(-2) &= 6(-2 - 3) < 0 \\
\Rightarrow f''(8) &= 6(8 - 3) > 0.
\end{align*}
\]

\[
\begin{align*}
f(-5) &= -58 \\
f(14) &= 360 \\
f(-2) &= 104 \\
f(8) &= -396.
\end{align*}
\]

Maximum: \((14, 360)\).
Example

Find the global extrema of \(f(x) = x^3 - 9x^2 - 48x + 52 \) on \([-5, 14]\).

\[
\begin{align*}
 f'(x) &= 3x^2 - 18x - 48 = 3(x^2 - 6x - 16) \\
 &= 3(x + 2)(x - 8) \\
 f''(x) &= 6x - 18 = 6(x - 3) \\
 \Rightarrow f''(-2) &= 6(-2 - 3) < 0 \\
 \Rightarrow f''(8) &= 6(8 - 3) > 0.
\end{align*}
\]

\[
\begin{align*}
 f(-5) &= -58 \\
 f(14) &= 360 \\
 f(-2) &= 104 \\
 f(8) &= -396.
\end{align*}
\]

Maximum: \((14, 360)\).
Minimum: \((8, -396)\).
For a cost function, $C(q)$, and a revenue function, $R(q)$, define
For a cost function, $C(q)$, and a revenue function, $R(q)$, define

- the *marginal cost* is

$$\frac{d}{dq} C(q) = C'(q),$$
Definition

For a cost function, $C(q)$, and a revenue function, $R(q)$, define

- the *marginal cost* is
 \[
 \frac{d}{dq} C(q) = C'(q),
 \]

- the *marginal revenue* is
 \[
 \frac{d}{dq} R(q) = R'(q).
 \]
Definition 2

The *marginal profit* is

\[\pi'(q) = R'(q) - C'(q). \]
Definition 2

The *marginal profit* is

\[\pi'(q) = R'(q) - C'(q). \]

Remark 1

Critical points occur whenever marginal cost equal marginal revenue, or one of marginal cost/revenue is undefined.
Example

Find the quantity which maximizes profit for the given revenue and cost functions on \([0, 1000]\)

\[
R(q) = 5q - 0.003q^2 \\
C(q) = 300 + 1.1q
\]
Example

Find the quantity which maximizes profit for the given revenue and cost functions on \([0, 1000]\)

\[
R(q) = 5q - 0.003q^2 \\
C(q) = 300 + 1.1q
\]

Since

\[
\pi(q) = -0.003q^2 + (5 - 1.1)q - 300
\]

is a quadratic with negative leading coefficient, the global maximum occurs at
Find the quantity which maximizes profit for the given revenue and cost functions on $[0, 1000]$

\[R(q) = 5q - 0.003q^2 \]
\[C(q) = 300 + 1.1q \]

Since

\[\pi(q) = -0.003q^2 + (5 - 1.1)q - 300 \]

is a quadratic with negative leading coefficient, the global maximum occurs at

\[q = \frac{-(5 - 1.11)}{2(-0.003)} \]
Example

Find the quantity which maximizes profit for the given revenue and cost functions on $[0, 1000]$

\[R(q) = 5q - 0.003q^2 \]
\[C(q) = 300 + 1.1q \]

Since

\[\pi(q) = -0.003q^2 + (5 - 1.1)q - 300 \]

is a quadratic with negative leading coefficient, the global maximum occurs at

\[q = \frac{-(5 - 1.11)}{2(-0.003)} = 650 \]
Example

At a price of $80 for a half day trip, a white water rafting company attracts 300 customers.
At a price of $80 for a half day trip, a white water rafting company attracts 300 customers. Every $5 decrease in price attracts an additional 30 customers.
Example

At a price of $80 for a half day trip, a white water rafting company attracts 300 customers. Every $5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

Since each $5 decrease in the price, p, increases the number of customers, q, by 30, we have

$$q(p)$$
Example

At a price of $80 for a half day trip, a white water rafting company attracts 300 customers. Every $5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

Since each $5 decrease in the price, \(p \), increases the number of customers, \(q \), by 30, we have

\[
q(p) = 300 + \frac{(80 - p)}{5} \cdot 30
\]
At a price of $80 for a half day trip, a white water rafting company attracts 300 customers. Every $5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

Since each $5 decrease in the price, \(p \), increases the number of customers, \(q \), by 30, we have

\[
q(p) = 300 + \frac{(80 - p)}{5} \cdot 30
\]

\[
= 300 + 6(80 - p)
\]
At a price of $80 for a half day trip, a white water rafting company attracts 300 customers. Every $5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

Since each $5 decrease in the price, p, increases the number of customers, q, by 30, we have

\[q(p) = 300 + \frac{(80 - p)}{5} \cdot 30 \]

\[= 300 + 6(80 - p) \]

\[= 300 + 480 - 6p \]
Example

At a price of $80 for a half day trip, a white water rafting company attracts 300 customers. Every $5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

Since each $5 decrease in the price, p, increases the number of customers, q, by 30, we have

\[q(p) = 300 + \frac{(80 - p)}{5} \cdot 30 \]

\[= 300 + 6(80 - p) \]

\[= 300 + 480 - 6p \]

\[= -6p + 780. \]
Example

At a price of $80 for a half day trip, a white water rafting company attracts 300 customers. Every $5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

The revenue is therefore

\[R(p) = \]
Example

At a price of $80 for a half day trip, a white water rafting company attracts 300 customers. Every $5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

The revenue is therefore

\[R(p) = p(-6p + 780) \]
Example

At a price of $80 for a half day trip, a white water rafting company attracts 300 customers. Every $5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

The revenue is therefore

\[R(p) = p(-6p + 780) = -6p^2 + 780p. \]
At a price of $80 for a half day trip, a white water rafting company attracts 300 customers. Every $5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

The revenue is therefore

\[R(p) = p(-6p + 780) = -6p^2 + 780p. \]

This is a downward facing parabola, so the maximum occurs at the vertex
At a price of $80 for a half day trip, a white water rafting company attracts 300 customers. Every $5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

The revenue is therefore

\[R(p) = p(-6p + 780) = -6p^2 + 780p. \]

This is a downward facing parabola, so the maximum occurs at the vertex

\[\frac{-780}{2(-6)} \]
EXAMPLE

At a price of $80 for a half day trip, a white water rafting company attracts 300 customers. Every $5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

The revenue is therefore

\[R(p) = p(-6p + 780) = -6p^2 + 780p. \]

This is a downward facing parabola, so the maximum occurs at the vertex

\[p = \frac{-780}{2(-6)} = \frac{780}{12} = 65. \]
At a price of $80 for a half day trip, a white water rafting company attracts 300 customers. Every $5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

The revenue is therefore

\[R(p) = p(-6p + 780) = -6p^2 + 780p. \]

This is a downward facing parabola, so the maximum occurs at the vertex

\[\frac{-780}{2(-6)} = \frac{780}{12} = 65 \]
Example

At a price of $80 for a half day trip, a white water rafting company attracts 300 customers. Every $5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

The maximum revenue is
At a price of $80 for a half day trip, a white water rafting company attracts 300 customers. Every $5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

The maximum revenue is

\[R(65) \]
Example

At a price of $80 for a half day trip, a white water rafting company attracts 300 customers. Every $5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

The maximum revenue is

\[R(65) = 25,350. \]